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Abstract. We prove optimal second order convergence of a modified BDM1

mixed finite element scheme for advection-diffusion problems in divergence

form. If advection is present, it is known that the total flux is approximated

only with first order accuracy by the classical BDM1 mixed method, which
is suboptimal since the same order of convergence is obtained if the computa-

tionally less expensive RT0 element is used. The modification that was first

proposed in [7] is based on the hybrid problem formulation and consists in us-
ing the Lagrange multipliers for the discretization of the advective term instead

of the cellwise constant approximation of the scalar unknown.

1. Introduction

In the present work, we are concerned with mixed finite element approximations
of the advection-diffusion problem

∂tu = div(a∇u− ub) + f in Ω× (0, T ),(1a)

u = u0 on Ω× {0},(1b)

u = 0 on ∂Ω× (0, T ),(1c)

where Ω denotes a bounded domain in Rd, d ∈ {2, 3}, and T > 0 is the final time.
This equation describes the evolution of a conserved quantity u subject to diffusion
and advection. Throughout this work, we assume the diffusion coefficient a to be
essentially bounded and uniformly elliptic on Ω×[0, T ]. The advection velocity field
b is required to belong to L∞([0, T ];W 2,∞(Ω)), and the source term f is required
to belong to L2(Ω× [0, T ]). Further regularity assumptions on a, b and f are only
introduced implicitly by the definition of our numerical scheme requiring that they
are well-defined at each discrete time tn, and through the regularity assumptions
on the exact solution u and the total flux q.

Mixed finite element methods for the equation (1) are based on the mixed refor-
mulation of the problem: In this reformulation, the total flux q is introduced as an
additional explicit variable and the equation (1a) translates into the system

∂tu = −divq + f in Ω× (0, T ),(2a)

q = −a∇u+ ub in Ω× (0, T ).(2b)

A mixed finite element method consists in approximating the quantities q and u si-
multaneously in appropriate function spaces by discretizing the system (2). Mixed
methods are well suited for solving elliptic and parabolic problems which arise in
many fields of applications. In particular, they are locally conservative, provide
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continuous fluxes across element boundaries and can handle distorted and unstruc-
tured grids well. For a general overview on mixed finite element methods and their
applications, we refer the reader to the books [3, 4, 6], the review articles [13, 15],
and the references therein.

Mixed methods for advection-diffusion problems based on the Raviart-Thomas
elements have been analyzed in [11] and [12]. Using these finite element spaces, the
flux variable and the scalar variable are approximated with the same order of con-
vergence. For problems where the main interest lies in the flux variable, the BDM
spaces were introduced [5], which are able to approximate the flux to one order
higher than the scalar variable. For example, if the BDM1 element is employed for
the discretization of an elliptic pure diffusion equation, the approximation of the
flux variable is of second order accuracy in the mesh size h, while the approxima-
tion of the scalar variable is of first order accuracy. Error estimates in L2 and L∞

for general second order elliptic problems with nonvanishing advection using the
BDM family of elements were derived in [9] and [10], respectively. It was shown
that in case of additional advective transport — more precisely, when an advective
term in divergence form is present and the flux variable of the mixed method is
defined to be the total flux consisting of advective and diffusive transport — , the
order of convergence in the flux variable in the L2 norm drops to one. The order
of convergence is then limited by the first order accuracy of the approximation for
the transported quantity itself. This phenomenon of suboptimal convergence may
occur whenever the mixed finite element spaces employed use polynomials of higher
degree for the approximation of the flux variable than for the approximation of the
scalar variable.

In the paper [7], a scheme for advection-diffusion-reaction equations has been
introduced which represents a modification of the classical BDM1 scheme based
on the hybrid problem formulation. More precisely, in the usual system of linear
equations for the mixed hybrid BDM1 scheme, the cellwise constant approximation
of u in the definition of the advective flux is replaced by a reconstruction based on
the interelement Lagrange multipliers (which are introduced during hybridization
to relax the continuity constraint of the flux across the element boundaries). The
original purpose of this modification was to improve stability properties of the
scheme for moderate Péclet numbers. However, it turns out that this modification
additionally improves the order of convergence of the scheme and restores optimal
second-order convergence for the fluxes even in the presence of a nonvanishing
advective transport term.

It is a classical result dating back to the original works of Arnold and Brezzi
[1] and Brezzi, Douglas, and Marini [5] that the Lagrange multipliers from the
hybridization process carry higher order information about the scalar variable u:
The Lagrange multipliers may be used to reconstruct a higher order nonconforming
approximation of u in the space of Crouzeix-Raviart elements. The precise modifi-
cation in [7] provides a higher order approximation of the advective flux ub using
the Lagrange multipliers.

In the present work, we give an interpretation of the modification to the mixed
hybrid BDM1 scheme introduced in [7] on the finite element level. Based on this
interpretation, we establish optimal order error estimates for the modified BDM1

scheme from [7]. Furthermore, we present an extension of the modification —
which has been introduced in [7] in the framework of planar problems — to the
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case of three space dimensions. Although our presentation is restricted to simplicial
meshes consisting of triangles or tetrahedra, the same ideas can be easily transferred
to quadrilateral (respectively hexahedral) mesh elements.

For the RT0 element, the modification from [7] has been analyzed in [8] along
with other upwind-mixed hybrid schemes. In [14], the idea of using the Lagrange
multiplier in the advective term was employed to derive a posteriori error estimates
for lowest order mixed finite element approximations of advection-diffusion-reaction
equations.

This article is organized as follows. In the next section, we recall the classi-
cal BDM1 method and the modified method of [7]; we furthermore introduce a
reconstruction operator which provides a description of the modification of [7] on
the finite element level. Moreover, we recall the analytical properties of the finite
element spaces. Section 3 contains the statement of our main results, the proofs
of which are given in Sections 4 and 5. Finally, in Section 6, numerical results are
presented to illustrate the analytical results.

Notation. Throughout the paper, we use standard notation from numerical
analysis. By ∇ and div we denote the distributional gradient and divergence,
respectively. The expression D2 refers to the second (distributional) derivative.
For a quantity defined only on a face, we denote its distributional derivative (with
the face considered as a manifold) nevertheless by ∇. By W k,p(Ω) we denote the
space of functions in Lp(Ω) whose kth distributional derivative also belongs to
Lp(Ω). The space W k,2(Ω) will also be denoted as Hk(Ω). By Hk

0 (Ω) we denote
the closure in Hk(Ω) of the set of compactly supported smooth functions in Ω. The
space Hdiv(Ω) consists of the vector fields in L2(Ω) whose distributional divergence
also belongs to L2(Ω).

By Pk(K) we denote the space of polynomials up to degree k on some set K ⊂
Rd. By Th we denote the set of simplices of some triangulation of our domain
Ω ⊂ Rd; the symbol Fh refers to the set of all faces of the simplices K ∈ Th.
By L2(F ) for some F ∈ Fh we denote the L2-space with respect to the surface
measure on F . The notation L2(Fh) refers to the L2-space with respect to the
surface measure on the union of all faces.

When evaluating the trace of some vector field vh on a face F across which vh
may have a jump, we shall write vh|K to make clear from which side the trace is
to be understood. In case no ambiguity may arise, we shall omit the |K .

2. The modified BDM1 mixed hybrid finite element scheme

Discretizing equation (2) in space and time, we obtain a fully discrete mixed finite
element scheme for the advection-diffusion problem (1). We use an implicit Euler
scheme for time discretization and denote the time elapsed at the n-th timestep by
tn, 0 ≤ n ≤ N . For the space discretization with the BDM1 mixed finite element,
let (Th)h>0 denote a family of regular triangulations of Ω consisting of closed d-
simplices K ∈ Th. In this work, all elements are assumed to have flat faces, and
the set of all faces associated with Th is denoted by Fh. The case of boundary
elements having curved faces could be handled with minor modifications, cf. [5].
For the discretization using the BDM1 mixed finite element method, we define the



4 FABIAN BRUNNER, JULIAN FISCHER, AND PETER KNABNER

function spaces

Vh := {vh ∈ Hdiv(Ω) : vh|K ∈ [P1(K)]d ∀K ∈ Th},(3)

Wh := {wh ∈ L2(Ω) : wh|K ∈ P0(K) ∀K ∈ Th}.(4)

Then, for given initial data u0
h ∈ Wh, for each time step n ∈ {1, . . . , N} we seek

(qnh, u
n
h) ∈ Vh ×Wh satisfying

ˆ
Ω

unh − u
n−1
h

tn − tn−1
wh dx = −

ˆ
Ω

divqnh wh dx+

ˆ
Ω

f(·, tn)wh dx,(5a)

ˆ
Ω

a−1(·, tn)qnh · vh dx =

ˆ
Ω

unh divvh dx+

ˆ
Ω

unha
−1(·, tn)b(·, tn) · vh dx(5b)

for all (vh, wh) ∈ Vh ×Wh.
In the mixed hybrid formulation of the problem, additionally the continuity

constraint of the normal component of the fluxes at the faces of the triangulation
is relaxed: We introduce the spaces

V̂h := {vh ∈ [L2(Ω)]d : vh|K ∈ [P1(K)]d ∀K ∈ Th},(6)

Λh,0 := {µh ∈ L2(Fh) : µh|F ∈ P1(F ) ∀F ∈ Fh, µh|∂Ω ≡ 0},(7)

and look for solutions (qnh, u
n
h, λ

n
h) ∈ V̂h ×Wh × Λh,0 satisfying

ˆ
Ω

unh − u
n−1
h

tn − tn−1
wh dx = −

∑
K∈Th

ˆ
K

divqnh wh dx+

ˆ
Ω

f(·, tn)wh dx,

(8a)

ˆ
Ω

a−1(·, tn)qnh · vh dx =
∑
K∈Th

ˆ
K

unh divvh dx+

ˆ
Ω

unha
−1(·, tn)b(·, tn) · vh dx

(8b)

−
∑
K∈Th

ˆ
∂K

λnh vh|K · n∂K dS,

∑
K∈Th

ˆ
∂K

µh q
n
h|K · n∂K dS = 0

(8c)

for all (vh, wh, µh) ∈ V̂h × Wh × Λh,0. Here, n∂K is the outer unit normal to
∂K and the λnh denote the Lagrange multipliers introduced to relax the continuity
constraint on the flux qnh at the faces of the triangulation (which is no longer

incorporated in the new ansatz space V̂h for qnh, but instead explicitly enforced
by equation (8c)). Note that the solution to the hybrid system coincides with the
solution from the non-hybridized system. Moreover, the flux qnh and the scalar
unknown unh can be eliminated at the level of the linear system – a process called
static condensation – , and a system for the Lagrange multipliers remains to be
solved after this elimination process. This linear system consists of fewer variables
than the linear system resulting from the nonhybrid formulation and it does no
longer have the structure of a saddle point problem; therefore, standard iterative
linear solvers can be employed to solve it numerically. The quantities of interest
qnh and unh may subsequently be reconstructed on every simplex from the Lagrange
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multipliers on the faces of the simplex, which is computationally cheap as it is a
local procedure.

We shall use the standard basis for hybridized BDM1 finite elements. The space
Wh being the space of functions which are constant on every K ∈ Th, a basis of Wh

is given by the characteristic functions of the elements K ∈ Th.
The space Λh,0 for the Lagrange multipliers consists of functions which are de-

fined on the faces of the triangulation and which are linear on every face (e.g. in two
spatial dimensions d = 2, the functions in Λh,0 are defined to be linear polynomials
on every edge of our triangulation and may be discontinuous at the vertices). In two
space dimensions, a basis of this space is given by functions vanishing everywhere
except for one interior edge and taking the value 0 at one endpoint and the value
1 at the other endpoint of this edge. More precisely, for an interior edge F with
endpoints x1

F and x2
F , we denote by µiF the function in Λh,0 which takes the value

1 at xiF and the value 0 at the other endpoint of F and vanishes on all other edges.

For V̂h, in the case d = 2 we define our basis functions to be the vector fields
that vanish on every triangle except for one triangle K, on which the normal flux is
prescribed to be zero at every edge except for one edge F ; on this edge, we require
the (outward) normal flux to be 2/|F | at the point 1

3 (2x1
F + x2

F ) and to be 0 at the

point 1
3 (x1

F + 2x2
F ) (or the other way around). The corresponding basis function is

denoted by v1
KF (respectively v2

KF ).
In three space dimensions, there are three basis functions of Λh,0 associated with

each interior face, and we denote by µiF the basis function vanishing on all faces but
F and taking the value 1 in the midpoint mi

F of the i-th edge of F and the value 0
in the midpoints of the other edges. Accordingly, we define the basis function viKF
of V̂h associated with the face F of K to have zero normal flux on all faces but
F , where it is required to take the value 3/|F | in mi

F and the value 0 in the other
midpoints; outside of K, the function viKF is prescribed to be zero.

Note that our basis functions satisfy the following properties (both in the case
d = 2 and in the case d = 3):

ˆ
K

divviKF dx = 1 ∀F ∈ Fh, F ⊂ ∂K, i = 1, . . . , d,

(9a)

ˆ
F

viKF ′ |K · n∂K dS = δFF ′ ∀F, F ′ ∈ Fh, F, F ′ ⊂ ∂K, i = 1, . . . , d,

(9b)

ˆ
F

µiFv
j
KF ′ |K · n∂K dS = δFF ′δij ∀F, F ′ ∈ Fh, F, F ′ ⊂ ∂K, i, j = 1, . . . , d.

(9c)

We then may define numbers qnKFi, u
n
K , λ

n
Fi ∈ R by expanding qnh, unh, and λnh as

qnh =
∑
K∈Th

∑
F∈Fh,F⊂∂K

d∑
i=1

qnKFiv
i
KF ,(10a)

unh =
∑
K∈Th

unKχK ,(10b)
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λnh =
∑
F∈Fh

d∑
i=1

λnFiµ
i
F .(10c)

We introduce the abbreviations

BFiF̃ j,nK :=

ˆ
K

((a(·, tn)−1viKF ) · vj
KF̃

dx,(11a)

FnK :=

ˆ
K

f(·, tn) dx,(11b)

and expand the advection velocity field (with Π1
h as introduced below) as

b(·, tn) = Π1
hb(·, tn) + bnr =

∑
K∈Th

∑
F∈Fh,F⊂∂K

d∑
i=1

bnKFiv
i
KF + bnr =: bnh + bnr .

(12)

The property (20b) below entails

||bnr ||L∞(Ω) ≤ Ch2||b(·, tn)||W 2,∞(Ω).(13)

Using the properties (9) of the basis functions, we may approximate the standard
mixed hybrid BDM1 scheme by the system of linear equations (the approximation
just consisting of replacing b(·, tn) by bnh)

|K|
unK − u

n−1
K

tn − tn−1
+

∑
F∈Fh,F⊂∂K

d∑
i=1

qnKFi = FnK ∀K ∈ Th,

(14a)

∑
F∈Fh,F⊂∂K

d∑
i=1

BFiF̃ j,nK qnKFi − unK −
∑

F∈Fh,F⊂∂K

d∑
i=1

bnKFiu
n
KB

FiF̃ j,n
K = −λn

F̃ j

(14b)

∀K ∈ Th, F̃ ∈ Fh with F̃ ⊂ ∂K, 1 ≤ j ≤ d,

∑
K∈Th,F⊂∂K

qnKFi = 0 ∀F ∈ Fh, 1 ≤ i ≤ d.
(14c)

In their modification, the authors of [7] replace the (only first-order accurate) term
unh in the advective flux term by an – as it will turn out higher order – reconstruction
making use of the Lagrange multipliers. Their modification was limited to the two-
dimensional case. The resulting system of linear equations reads

|K|
unK − u

n−1
K

tn − tn−1
+

∑
F∈Fh,F⊂∂K

2∑
i=1

qnKFi = FnK ∀K ∈ Th,

(15a)

∑
F∈Fh,F⊂∂K

2∑
i=1

BFiF̃ j,nK qnKFi − unK −
∑

F∈Fh,F⊂∂K

2∑
i=1

bnKFi
λnF1 + λnF2 + λnFi

3
BFiF̃ j,nK

(15b)

= −λn
F̃ j

∀K ∈ Th, F̃ ∈ Fh with F̃ ⊂ ∂K, 1 ≤ j ≤ 2,
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∑
K∈Th,F⊂∂K

qnKFi = 0 ∀F ∈ Fh, 1 ≤ i ≤ 2.

(15c)

As a first step towards the numerical analysis of this scheme, let us provide an
interpretation of the modification at the finite element level. For this purpose,
introduce an operator B : Λh,0 → Vh which – given a piecewise affine approximation
for the solution u on the faces of the triangulation – reconstructs an Hdiv-conforming
approximation for the advective flux in the space Vh. The operator B is defined to
act on Λh,0 as

B[λnh] :=
∑
K∈Th

∑
F∈Fh,F⊂∂K

2∑
i=1

λnFi + λnF1 + λnF2

3
bnKFiv

i
KF in case d = 2,(16a)

i.e. the normal advective flux nF · B[λnh] is prescribed at the two points of an edge
F dividing the edge into three segments of equal size to match the product of the
normal component of bnh and the Lagrange multiplier λnh at these points. As we
shall see below, this precise structure of the operator B is crucial for its higher order
approximation property.

In the present work, we shall also propose a natural extension of the modified
BDM1 scheme of [7] to the case of three spatial dimensions. To this aim, let us
define

B[λnh] :=
∑
K∈Th

∑
F∈Fh,F⊂∂K

3∑
i=1

λnFib
n
KFiv

i
KF in case d = 3,(16b)

which leads to the linear system

|K|
unK − u

n−1
K

tn − tn−1
+

∑
F∈Fh,F⊂∂K

3∑
i=1

qnKFi = FnK ∀K ∈ Th,

(17a)

∑
F∈Fh,F⊂∂K

3∑
i=1

BFiF̃ j,nK qnKFi − unK −
∑

F∈Fh,F⊂∂K

3∑
i=1

bnKFiλ
n
FiB

FiF̃ j,n
K = −λn

F̃ j

(17b)

∀K ∈ Th, F̃ ∈ Fh with F̃ ⊂ ∂K, 1 ≤ j ≤ 3,

∑
K∈Th,F⊂∂K

qnKFi = 0 ∀F ∈ Fh, 1 ≤ i ≤ 3.

(17c)

Thus, in the case of three space dimensions, B[λnh] is defined by prescribing the
normal advective flux at the midpoints of the edges of the faces (to match again the
product of the normal component of bnh and the Lagrange multiplier λnh at these
points). As we shall show below, this definition entails the desired higher order
approximation property.
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Using the operator B, the modified mixed hybrid scheme is equivalent to requir-
ing ˆ

Ω

unh − u
n−1
h

tn − tn−1
wh dx = −

∑
K∈Th

ˆ
K

divqnh wh dx+

ˆ
Ω

f(·, tn)wh dx,(18a)

ˆ
Ω

a−1(·, tn)qnh · vh dx =
∑
K∈Th

ˆ
K

unh divvh dx+

ˆ
Ω

a−1(·, tn)B[λnh] · vh dx(18b)

−
∑
K∈Th

ˆ
∂K

λnhvh|K · n∂K dS,

∑
K∈Th

ˆ
∂K

µhq
n
h|K · n∂K dS = 0

(18c)

for any (vh, wh, µh) ∈ V̂h ×Wh × Λh,0.

2.1. Interpolation operators. In this section, we recall the projection operators
that are used in our error analysis. For some fixed s > 2, let V := Hdiv(Ω)∩[Ls(Ω)]d

and let Π1
h : V → Vh denote the usual BDM1 projection operator (which is

defined by the condition that the normal component of Π1
hv on F must match

the L2(F )-orthogonal projection of the normal component of v to the space of
linear polynomials on F for every face F ∈ Fh); cf. [3, 5]. Moreover, we define
P 0
h : L2(Ω)→ Wh to be the L2(Ω)-orthogonal projection onto Wh. Assuming that

(Th)h>0 is a regular family of triangulations, i.e. that the ratios

σK :=
hK
ρK

(19)

with ρK denoting the diameter of the largest inscribed ball in K and hK denoting
the diameter of the element K are uniformly bounded by a constant σmax inde-
pendent of h, the following approximation properties are known to hold for the
projectors:

‖w − P 0
hw‖L2(Ω) ≤ Ch‖∇w‖L2(Ω) ∀w ∈ H1(Ω),(20a)

‖v −Π1
hv‖Lp(Ω) ≤ Ch2‖D2v‖Lp(Ω) ∀v ∈W 2,p(Ω),(20b)

where p ∈ [1,∞] and where the constants C depend only on σmax and (in the
second formula) the exponent p. Since the projectors are defined locally, the same
estimates hold on each element K ∈ Th of the triangulation with h replaced by hK .
We will also make use of the commuting diagram property

div(Π1
h) = P 0

h (div),(20c)

which implies that for any v ∈ V and w ∈ L2(Ω)ˆ
Ω

div(v −Π1
hv)wh dx = 0 ∀wh ∈Wh,(20d)

ˆ
Ω

div(vh)(w − P 0
hw) dx = 0 ∀vh ∈ Vh.(20e)

Finally, we denote by Qkh the orthogonal projection in L2(Fh) onto the space of
piecewise polynomials of degree smaller than or equal to k defined on the faces of
our mesh.
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3. Main Results

The main result of our present work, the higher order convergence property of
the modified mixed hybrid BDM1 scheme for our problem (1), reads as follows.

Theorem 1. Let a ∈ L∞(Ω× [0, T ];Rd×d) be uniformly elliptic with ellipticity con-
stant λ > 0 and upper bound Λ > 0, let f ∈ L2(Ω×[0, T ]), b ∈ L∞([0, T ];W 2,∞(Ω)),
and let Ω be a bounded Lipschitz domain. Moreover, let u ∈ L2([0, T ];H1

0 (Ω))
denote a weak solution to the problem (1) and let q be defined by (2b). Let

(qnh, u
n
h, λ

n
h) ∈ V̂h × Wh × Λh,0 be a solution to the numerical scheme (18) for

a given sequence of discrete times 0 = t0 < t1 < . . . < tN = T and let σmax be
defined as in (19). Set

τ := max
1≤n≤N

(tn − tn−1).

Then there exists some hmax = hmax(Ω, σmax, λ,Λ, ||b||L∞([0,T ],W 1,∞(Ω))) and some
maximal time step size τmax = τmax(Ω, σmax, λ,Λ, ||b||L∞(Ω×[0,T ])) such that the
following holds: Provided that the smallness conditions τ < τmax and h < hmax are
satisfied, the a priori error estimate

sup
1≤n≤N

||P 0
hu(·, tn)− unh||2L2(Ω) +

N∑
n=1

(tn − tn−1)||q(·, tn)− qnh||2L2(Ω)

≤ C(T, σmax, λ,Λ,Ω, ||b||L∞([0,T ];W 2,∞(Ω)))
(
||P 0

hu0 − u0
h||2L2(Ω)

+ ||∂ttu||2L∞(Ω×[0,T ])τ
2 + ||q||2L∞([0,T ];H2(Ω))h

4 + ||u||2L∞([0,T ];H2(Ω))h
4
)

holds.

As in the usual case for BDM1 finite elements, one may obtain a higher order
reconstruction of the solution u itself by postprocessing applied to the Lagrange
multipliers λnh. This is the statement of the next corollary.

Corollary 2. Let a ∈ L∞(Ω×[0, T ];Rd×d) be uniformly elliptic with ellipticity con-
stant λ > 0 and upper bound Λ > 0, let f ∈ L2(Ω×[0, T ]), b ∈ L∞([0, T ];W 2,∞(Ω)),
and let Ω be a bounded Lipschitz domain. Moreover, let u ∈ L2([0, T ];H1

0 (Ω))
denote a weak solution to the problem (1) and let q be defined by (2b). Let

(qnh, u
n
h, λ

n
h) ∈ V̂h × Wh × Λh,0 be a solution to the numerical scheme (18) for

a given sequence of discrete times 0 = t0 < t1 < . . . < tN = T and let σmax be
defined as in (19). Set

τ := max
1≤n≤N

(tn − tn−1).

Let the postprocessed variable ũnh be defined locally on each K ∈ Th by

ũnh|K ∈ P1(K),ˆ
F

ũnh|K − λnh dS = 0 ∀F ∈ Fh, F ⊂ ∂K,

i.e. in particular ũnh belongs to the space of lowest order Crouzeix-Raviart elements.
Then there exists some hmax = hmax(Ω, σmax, λ,Λ, ||b||L∞([0,T ],W 1,∞(Ω))) and some
maximal time step size τmax = τmax(Ω, σmax, λ,Λ, ||b||L∞(Ω×[0,T ])) such that the
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following holds: Provided that the smallness conditions τ < τmax and h < hmax are
satisfied, the a priori error estimate

N∑
n=1

(tn − tn−1)||u(·, tn)− ũnh||2L2(Ω)

≤ C(T, σmax, λ,Λ,Ω, ||b||L∞([0,T ];W 2,∞(Ω)))
(
||P 0

hu0 − u0
h||2L2(Ω)

+ ||∂ttu||2L∞(Ω×[0,T ])τ
2 + ||q||2L∞([0,T ];H2(Ω))h

4 + ||u||2L∞([0,T ];H2(Ω))h
4
)

holds.

4. Derivation of the Error Estimates

4.1. Error estimation is equivalent to proving approximation properties
for the operator B. Let us now proceed to the proof of our main result. We first
reduce our main theorem to an improved estimate for the approximation quality
of the advective flux reconstruction obtained by the operator B; this improved
estimate will then be the content of Lemma 3 below.

Proof of Theorem 1. In the following, we use the abbreviations un := u(·, tn), bn :=
b(·, tn), fn := f(·, tn), and an := a(·, tn). We then have by (1)

un − un−1

tn − tn−1
= − divqn + fn +

un − un−1

tn − tn−1
− ∂tu(·, tn),(21a)

qn = −an∇un + unbn(21b)

for qn defined by the second equation, which impliesˆ
Ω

un − un−1

tn − tn−1
w dx = −

ˆ
Ω

divqnw dx+

ˆ
Ω

fnw dx(22a)

+

ˆ
Ω

(
un − un−1

tn − tn−1
− ∂tu(·, tn)

)
w dx,

ˆ
Ω

(an)
−1

qn · v dx =
∑
K∈Th

ˆ
K

un divv dx−
∑
K∈Th

ˆ
∂K

unv|K · n∂K dS(22b)

+

ˆ
Ω

un(an)
−1

bn · v dx

for any w ∈ L2(Ω) and any v ∈
⊕

K∈Th H
div(K).

Arguing analogously to [5] and setting

dnh : = qn − qnh,(23a)

znh : = P 0
hu

n − unh,(23b)

enh : = Π1
hq

n − qnh,(23c)

it follows from (18) (with (18c) implying that qnh ∈ Vh, i.e. we may replace the
broken integral

∑
K

´
K

in (18a) by the integral over the full domain
´

Ω
), (22), and

the definition of P 0
h (which implies that

´
Ω

(un−P 0
hu

n)wh dx = 0 for any wh ∈Wh

and any 0 ≤ n ≤ N ; due to divvh ∈ Wh for vh ∈ V̂h, this in particular entails´
Ω

(un − unh) divvh dx =
´

Ω
znh divvh dx) that
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ˆ
Ω

znh − z
n−1
h

tn − tn−1
wh dx = −

ˆ
Ω

divdnh wh dx

(24a)

+

ˆ
Ω

(
un − un−1

tn − tn−1
− ∂tu(·, tn)

)
wh dx,

ˆ
Ω

(an)
−1

dnh · vh dx =
∑
K∈Th

ˆ
K

znh divvh dx+

ˆ
Ω

(an)
−1

(unbn − B[λnh]) · vh dx

(24b)

−
∑
K∈Th

ˆ
∂K

(un − λnh)vh|K · n∂K dS,

∑
K∈Th

ˆ
∂K

µhq
n
h|K · n∂K dS = 0

(24c)

for any (vh, wh, µh) ∈ V̂h ×Wh × Λh,0.
Testing the error equation (24b) with enh ∈ Vh (to see the latter inclusion, note

that qnh ∈ Vh holds by (24c); due to enh ∈ Vh, we may in particular replace the
broken integral

∑
K

´
K

in (24b) by
´

Ω
) and taking into account dnh = enh + qn −

Π1
hq

n, we infer (note that the integrals over the faces cancel due to vh := enh having
continuous normal component across the faces and due to the n∂K having opposite
signs for the two simplices K adjacent to an interior face)

ˆ
Ω

(an)
−1

enh · enh dx =

ˆ
Ω

div enh z
n
h dx−

ˆ
Ω

(an)
−1

(qn −Π1
hq

n) · enh dx

+

ˆ
Ω

(an)
−1

(unbn − B[λnh]) · enh dx.

Taking into account the fact that
ˆ

Ω

div enh wh dx =

ˆ
Ω

divdnh wh dx

= −
ˆ

Ω

znh − z
n−1
h

tn − tn−1
wh dx+

ˆ
Ω

(
un − un−1

tn − tn−1
− ∂tu(·, tn)

)
wh dx

holds for any wh ∈ Wh by (20d) and (24a) (i.e. in particular for wh := znh ), we
deduce ˆ

Ω

(znh − zn−1
h )znh dx+ (tn − tn−1)

ˆ
Ω

(an)−1enh · enh dx

=

ˆ
Ω

(
un − un−1 − (tn − tn−1)∂tu(·, tn)

)
znh dx

− (tn − tn−1)

ˆ
Ω

(an)−1(qn −Π1
hq

n) · enh dx

+ (tn − tn−1)

ˆ
Ω

(an)−1(unbn − B[λnh]) · enh dx.
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Noting that (znh−z
n−1
h )znh = 1

2 |z
n
h |2− 1

2 |z
n−1
h |2 + 1

2 |z
n
h−z

n−1
h |2, it follows by Young’s

inequality that

||znh ||2L2(Ω) + ||znh − zn−1
h ||2L2(Ω) + (tn − tn−1)c||enh||2L2(Ω)

≤ ||zn−1
h ||2L2(Ω) + (tn − tn−1)C||qn −Π1

hq
n||2L2(Ω)

+ (tn − tn−1)C||unbn − B[λnh]||2L2(Ω)

+ 2
∣∣∣∣un − un−1 − (tn − tn−1)∂tu(·, tn)

∣∣∣∣
L2(Ω)

||znh ||L2(Ω)

≤ ||zn−1
h ||2L2(Ω) + (tn − tn−1)C||qn −Π1

hq
n||2L2(Ω)

+ (tn − tn−1)C||unbn − B[λnh]||2L2(Ω)

+ (tn − tn−1)2C||∂ttu||L∞(Ω×[0,T ])||znh ||L2(Ω)

≤ ||zn−1
h ||2L2(Ω) + (tn − tn−1)C||qn −Π1

hq
n||2L2(Ω)

+ (tn − tn−1)C||unbn − B[λnh]||2L2(Ω)

+ (tn − tn−1)||znh ||2L2(Ω)

+ (tn − tn−1)3C||∂ttu||2L∞(Ω×[0,T ]).

Furthermore, we have

||dnh||L2(Ω) ≤ ||enh||L2(Ω) + ||qn −Π1
hq

n||L2(Ω).

Summing up, the estimate (25) below then implies in connection with the two
previous estimates in case h ≤ hmax (recall (23a) and (23b))

||znh ||2L2(Ω) + ||znh − zn−1
h ||2L2(Ω) + (tn − tn−1)(c− Ch2||bn||2W 1,∞(Ω))||d

n
h||2L2(Ω)

≤ ||zn−1
h ||2L2(Ω)

+ (tn − tn−1)C||qn −Π1
hq

n||2L2(Ω)

+ (tn − tn−1)C(1 + ||bn||2L∞(Ω))||z
n
h ||2L2(Ω)

+ (tn − tn−1)Ch4||bn||2W 2,∞(Ω)||u
n||2H2(Ω)

+ (tn − tn−1)3C||∂ttu||2L∞(Ω×[0,T ]).

Possibly decreasing hmax, we see that for the prefactor of the third term on the
left-hand side, we may assume that (c− Ch2||bn||2W 1,∞(Ω)) ≥ c.

Set ηn :=
∏n
k=1(1 − C · (1 + ||b||2L∞(Ω×[0,T ]))(tk − tk−1)), with C denoting the

constant in the third line of the right-hand side in the previous estimate. We then
get by multiplying the previous inequality by ηn−1 and taking the sum with respect
to n (recall that τ = max1≤n≤N (tn − tn−1))

ηN ||P 0
hu

N − uNh ||2L2(Ω) +

N∑
n=1

ηn−1||znh − zn−1
h ||2L2(Ω)

+

N∑
n=1

ηn−1(tn − tn−1)c||qn − qnh||2L2(Ω)
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≤ ||P 0
hu

0 − u0
h||2L2(Ω)

+

N∑
n=1

ηn−1(tn − tn−1)C||qn −Π1
hq

n||2L2(Ω)

+

N∑
n=1

ηn−1(tn − tn−1)Ch4||bn||2W 2,∞(Ω)||u
n||2H2(Ω)

+

N∑
n=1

ηn−1(tn − tn−1)Cτ2||∂ttu||2L∞(Ω×[0,T ]),

which gives the desired error estimate after an application of (20b) (note that ηn
is bounded from below by exp(−C(1 + ||b||2L∞(Ω×[0,T ]))T ), provided that τ ≤ τmax;

note also that ηn ≤ 1 under the same condition). �

4.2. Approximation properties of the reconstruction operator B. It re-
mains to establish the following lemma, which quantifies the approximation prop-
erties of our operator B as defined in (16).

Lemma 3. Let (qnh, u
n
h, λ

n
h) ∈ Vh × Wh × Λh,0 be a solution to the numerical

scheme (18) for a given n ∈ N. There exists a constant c = c(Ω, σmax, λ) > 0 such
that the following holds: Provided that the smallness condition h2||bn||2L∞(Ω) +

h4||∇bn||2L∞(Ω) ≤ c is satisfied, the operator B admits the estimate

||unbn − B[λnh]||2L2(Ω) ≤Ch
2||bn||2W 1,∞(Ω)||q

n − qnh||2L2(Ω)(25)

+ C||bn||2L∞(Ω)||P
0
hu

n − unh||2L2(Ω)

+ Ch4||bn||2W 2,∞(Ω)||u
n||2H2(Ω).

Proof. First, we observe that it is enough to establish the estimate

||unbn − B[λnh]||2L2(Ω)(26)

≤ Ch2
(
||bn||2L∞(Ω) + h2||∇bn||2L∞(Ω)

)
||qn − qnh||2L2(Ω)

+ C||bn||2L∞(Ω)||P
0
hu

n − unh||2L2(Ω)

+ Ch2
(
||bn||2L∞(Ω) + h2||∇bn||2L∞(Ω)

)
||B[λnh]− unbn||2L2(Ω)

+ Ch4||∇bn||2L∞(Ω)||∇u
n||2L2(Ω)

+ Ch6||∇bn||2L∞(Ω)||D
2un||2L2(Ω)

+ Ch4||D2bn||2L∞(Ω)||u
n||2L2(Ω)

+ Ch6||D2bn||2L∞(Ω)||∇u
n||2L2(Ω)

+ Ch4||D2(bnun)||2L2(Ω).

Indeed, by an absorption argument applied to the third term on the right-hand
side, the bound (26) entails our lemma.

To prove (26), we first show that the Lagrange multipliers represent a better
approximation for the scalar unknown on the edges. Following along the lines of
the proof of Theorem 4.3 in [5], we first test (18b) with a test function vh ∈ V̂h

supported in some K ∈ Th and satisfying vh ·n∂K = λnh−Q1
hu

n on F and vh ·n∂K =
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0 on ∂K \ F (where F ∈ Fh, F ⊂ ∂K); note that we have

||vh||L2(K) + hK ||vh||H1(K) ≤ Ch
1
2

K ||λ
n
h −Q1

hu
n||L2(F ).

This yieldsˆ
K

(an)
−1

qnh · vh dx−
ˆ
K

unh divvh dx−
ˆ
K

(an)
−1B[λnh] · vh dx

+

ˆ
F

λnh(λnh −Q1
hu

n) dS = 0.

On the other hand, from (22b), we haveˆ
K

(an)
−1

qn · vh dx−
ˆ
K

un divvh dx−
ˆ
K

(an)
−1
unbn · vh dx

+

ˆ
F

un(λnh −Q1
hu

n) dS = 0.

Subtracting the last two equations from each other and using that divvh ∈ P0(K),
we obtainˆ

K

(an)
−1

(qnh − qn) · vh dx−
ˆ
K

(unh − P 0
hu

n) divvh dx

−
ˆ
K

(an)
−1

(B[λnh]− unbn) · vh dx+

ˆ
F

|λnh −Q1
hu

n|2 dS = 0.

This gives

||λnh −Q1
hu

n||L2(F ) ≤Ch
1
2

K ||q
n
h − qn||L2(K) + Ch

− 1
2

K ||u
n
h − P 0

hu
n||L2(K)(27)

+ Ch
1
2

K ||B[λnh]− unbn||L2(K).

Therefore, λnh is a better approximation for un on the edges, provided that we can
bound the right-hand side of this estimate appropriately.

By Proposition 4 below, this estimate entails an improved bound for the approx-
imation quality of n · B[λnh] for the advective normal flux n ·ub on the edges. More
precisely, from the previous formula, we deduce the estimate

||n · B[λnh]− n · bnQ1
hu

n||2L2(F )

≤ C||n ·Π1
hb

n λnh − n ·Π1
hb

nQ1
hu

n||2L2(F )

+ C||n ·Π1
hb

nQ1
hu

n − n · bnQ1
hu

n||2L2(F )

+ C||n · B[λnh]− n ·Π1
hb

nλnh||2L2(F )

≤ ChK ||bn||2L∞(Ω)||q
n
h − qn||2L2(K) + Ch−1

K ||b
n||2L∞(Ω)||u

n
h − P 0

hu
n||2L2(K)

+ ChK ||bn||2L∞(Ω)||B[λnh]− unbn||2L2(K) + Ch4
K ||D2bn||2L∞(Ω)||u

n||2L2(F )

+ Ch4
K ||∇Π1

hb
n||2L∞(∪K∈Th

K)||∇λ
n
h||2L2(F ),(28)

where the estimate for the term in the fourth line is a consequence of the rescaled
version of Proposition 4 below and the definition (16) of the operator B: By (16),
the quantity n · B[λnh] (which by definition is a linear polynomial on any face F
of the triangulation) is prescribed to match the product of the normal component

of Π1
hb

n =
∑
K∈Th

∑
F∈Fh,F⊂∂K

∑d
i=1 b

n
KFiv

i
KF and λnh at the two points which

divide F into three segments of equal size (case d = 2) respectively at the midpoints
of the edges of the face (case d = 3). For this approximation of the product of the
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linear polynomials n ·Π1
hb

n and λnh on the face F , Proposition 4 after a change of
variables precisely provides the higher-order approximation property.

To obtain a bound on the derivative of the Lagrange multiplier λnh, we test

equation (24b) with a suitable test function vh ∈ V̂h satisfying suppvh ⊂ K,´
K

divvh dx = 0, n∂K · vh = λnh − Q0
hλ

n
h on F and n∂K · vh = 0 on ∂K \ F

(note that we have
´
F
un(λnh − Q0

hλ
n
h) dS =

´
F

(un − Q0
hu

n)(λnh − Q0
hλ

n
h) dS and´

F
λnh(λnh − Q0

hλ
n
h) dS =

´
F
|λnh − Q0

hλ
n
h|2 dS by the properties of the projection

operator Q0
h). This yields

||λnh −Q0
hλ

n
h||2L2(F ) ≤

ˆ
K

(an)
−1

dnh · vh dx−
ˆ
K

(an)
−1

(unbn − B[λnh]) · vh dx

+ ||un −Q0
hu

n||L2(F )||λnh −Q0
hλ

n
h||L2(F ),

which gives using the estimate ||vh||L2(K) ≤ Ch
1/2
K ||λnh−Q0

hλ
n
h||L2(F ) (this estimate

holds on the reference simplex and for a general simplex K ∈ Th by transformation)

||∇λnh||L2(F ) ≤ Ch−1
K ||λ

n
h −Q0

hλ
n
h||L2(F )

≤ Ch−1/2
K ||qnh − qn||L2(K) + Ch

−1/2
K ||unbn − B[λnh]||L2(K) + C||∇un||L2(F ).(29)

Finally, using the definition of the interpolation operator Π1
h and its approximation

properties as well as the fact that B takes values in Vh (note that elements vh ∈ Vh

satisfy the bound ||vh||2L2(K) ≤ ChK ||n∂K ·vh||
2
L2(∂K)), we obtain from (28) (applied

to the different faces of K) and the previous estimate

||B[λnh]− unbn||2L2(K)

(20b)

≤ 2||B[λnh]−Π1
h(bnun)||2L2(K) + Ch4

K ||D2(bnun)||2L2(K)

≤ ChK ||n∂K · (B[λnh]−Q1
h(bnun))||2L2(∂K) + Ch4

K ||D2(bnun)||2L2(K)

≤ ChK ||n∂K · (B[λnh]− bnQ1
hu

n)||2L2(∂K) + ChK ||Q1
h(bnun)− bnQ1

hu
n||2L2(∂K)

+ Ch4
K ||D2(bnun)||2L2(K)

(28,30)

≤ Ch2
K ||bn||2L∞(Ω)||q

n
h − qn||2L2(K) + C||bn||2L∞(Ω)||u

n
h − P 0

hu
n||2L2(K)

+ Ch2
K ||bn||2L∞(Ω)||B[λnh]− unbn||2L2(K) + Ch5

K ||D2bn||2L∞(Ω)||u
n||2L2(∂K)

+ Ch5
K ||∇bn||2L∞(Ω)||∇λ

n
h||2L2(∂K) + Ch5

K ||∇bn||2L∞(Ω)||∇u
n||2L2(∂K)

+ Ch5
K ||D2bn||2L∞(Ω)||u

n||2L2(∂K) + Ch4
K ||D2(bnun)||2L2(K)

(29)

≤ Ch2
K

(
||bn||2L∞(Ω) + h2

K ||∇bn||2L∞(Ω)

)
||qnh − qn||2L2(K)

+ C||bn||2L∞(Ω)||u
n
h − P 0

hu
n||2L2(K)

+ Ch2
K

(
||bn||2L∞(Ω) + h2

K ||∇bn||2L∞(Ω)

)
||B[λnh]− unbn||2L2(K)

+ Ch5
K ||∇bn||2L∞(Ω)||∇u

n||2L2(∂K)

+ Ch4
K ||D2bn||2L∞(Ω)||u

n||2L2(K)

+ Ch6
K ||D2bn||2L∞(Ω)||∇u

n||2L2(K)

+ Ch4
K ||D2(bnun)||2L2(K),
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from which (26) follows using the trace estimate

||∇un||2L2(∂K) ≤ Ch
−1
K ||∇u

n||2L2(K) + ChK ||D2un||2L2(K)

and taking the sum over all K ∈ Th. Note that in the last inequality of the previous
estimate we have used a trace estimate for un on K; furthermore, in the penultimate
inequality we have used the fact that

Q1
h(bnun)− bn Q1

hu
n = Q1

h((bn −Q0
hb

n)un)− (bn −Q0
hb

n)Q1
hu

n

= Q1
h((bn −Q0

hb
n)(un −Q0

hu
n))− (bn −Q0

hb
n)(Q1

hu
n −Q0

hu
n)

− (bn −Q1
hb

n)Q0
hu

n

holds, which implies for F ∈ Fh the estimate

||Q1
h(bnun)− bnQ1

hu
n||L2(F ) ≤Ch2

K ||∇bn||L∞(Ω)||∇un||L2(F )(30)

+ Ch2
K ||D2bn||L∞(Ω)||un||L2(F ).

�

The estimate of Corollary 2 can be derived by following along the lines of the
proof of Lemma 4.1 in [5], using (27), (25) and Theorem 1.

5. Auxiliary Results

5.1. Approximation of products of linear polynomials on the reference
face by linear polynomials. The following result is essential for our proof of
higher-order convergence of the modified BDM1 scheme, as it provides a justifica-
tion for the improved formula for the advective flux.

Proposition 4. Let m,Q ∈ P1(F̂ ) be two first-order polynomials defined on the
reference face

F̂ =

{
[0, 1] if d = 2,

conv{(0, 0), (1, 0), (0, 1)} if d = 3,

where conv denotes the convex hull.
Let further A denote the first-order polynomial on F̂ obtained by setting

A(x) := m(x)Q(x) for

{
x ∈ { 1

3 ,
2
3} if d = 2,

x ∈ {(0.5, 0), (0.5, 0.5), (0, 0.5)} if d = 3.

Then it holds that

||mQ−A||L2(F̂ ) ≤ C||∇m||L∞(F̂ )||∇Q||L2(F̂ ),(31)

where the constant C > 0 is independent of m,Q and A.

Recall that the modification of the scheme introduced in [7] corresponds to re-
placing the direct (first-order) approximation unh of our transported quantity u by
a reconstruction of the transported quantity obtained by using the Lagrange mul-
tiplier λnh. In the proof of Theorem 1 above, we have applied Proposition 4 to show
that the reconstruction B[λnh] approximates the advective flux with second-order
accuracy, provided that the Lagrange multipliers λnh are a second-order accurate
approximation of the projected concentration Q1

hu
n on the edges.
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Proof. We define an interpolation operator I1 : H2(F̂ )→ P1(F̂ ) by requiring

I1w(x) = w(x)

for x ∈ { 1
3 ,

2
3} if d = 2 and x ∈ {(0.5, 0), (0.5, 0.5), (0, 0.5)} if d = 3. By standard

techniques, we obtain

||I1w − w||L2(F̂ ) ≤ C||D
2w||L2(F̂ ).(32)

Since A = I1(mQ), estimate (31) follows from (32) and the fact that m and Q

are linear polynomials on F̂ (the latter fact implying that D2(mQ) = ∇m⊗∇Q+
∇Q⊗∇m).

�

6. Computational results

In this section we illustrate our theoretical results and compare the classical
and the modified BDM1 scheme with the help of computational experiments. Our
numerical results show that the error bounds derived above are sharp. Further
numerical tests, in which the modified scheme was applied to nonlinear reactive
transport problems, are contained in [2, 7].

6.1. Numerical results for a 2D test problem. In the first numerical test,
problem (1) is solved on the unit square Ω = (0, 1)2 ⊂ R2 on the time interval
[0, 1]. For the diffusion coefficient and the velocity field, we choose a = 12 and b =
(0,−1)>, respectively. Moreover, homogeneous Dirichlet conditions are imposed on
the boundary ∂Ω. The source term f is prescribed so that the analytical solution
of the problem reads

u(x, y, t) = x(1− x)y(1− y)e−t.

In each refinement step, the mesh (which for the first test consists only of two
triangles) is uniformly refined and the errors

E
(1)
h,τ = τ1/2

(
N∑
n=1

‖q(·, tn)− qnh‖2L2(Ω)

)1/2

,

E
(2)
h,τ = max

1≤n≤N
‖u(·, tn)− unh‖L2(Ω),

E
(3)
h,τ = max

1≤n≤N
‖P 0

hu(·, tn)− unh‖L2(Ω)

are computed. All computations are run for a constant time step size τ = 0.001,
which is chosen sufficiently small to ensure that the time discretization error is
negligible compared to the space discretization error. The experimental orders of
convergence are determined by

EOC
(i)
h,τ = log2

(
E

(i)
2h,τ

E
(i)
h,τ

)
, i ∈ {1, 2, 3}.

The results of the computations are listed in Tables 1 and 2. As expected, we
obtain optimal second order convergence for the flux variable if the advective fluxes
are approximated using the Lagrange multipliers, whereas only suboptimal first
order convergence is observed when the classical scheme is used. Moreover, the
scalar unknowns are approximated with first order accuracy for both schemes, the
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magnitude of the errors being of almost equal size. For the approximation of the
projection P 0

hu of the scalar variable into the space of piecewise constants by our
numerical solution unh, we observe the usual (second-order) superconvergence result
both in the case of the classical scheme and in the case of the modified scheme.

6.2. Numerical results for a 3D test problem. Finally, we present a numer-
ical example to demonstrate that the modified scheme works also in three space
dimensions. More precisely, we solve problem (1) on the unit cube Ω = (0, 1)3 ⊂ R3

on the time interval [0, 1] for constant diffusion a = 13, a constant velocity field
b = (0,−1, 0)> and homogeneous Dirichlet boundary conditions. Similarly to the
previous section, the right hand side f is prescribed so that

u(x, y, z, t) = x(1− x)y(1− y)z(1− z)e−t

represents the analytical solution. The computations are carried out for a con-
stant time step size τ = 0.05 and the mesh that initially consists of five simplices
is uniformly refined in each refinement step. The results of the computations are
listed in Tables 3 and 4 and clearly confirm our theoretical findings. As in the two-
dimensional case, the modified scheme provides optimal second order convergence
for the flux variable, whereas the standard scheme is only of first order. The mag-
nitude of the errors for the approximation of the scalar unknown and its projection
into the space of piecewise constant polynomials are almost equal for both schemes.

triangles E
(1)
h,τ EOC E

(2)
h,τ EOC E

(3)
h,τ EOC

2 · 40 4.36e-02 2.91e-02 1.80e-02
2 · 41 2.01e-02 1.12 1.60e-02 0.86 6.37e-03 1.50
2 · 42 5.94e-03 1.76 8.57e-03 0.90 1.88e-03 1.76
2 · 43 1.56e-03 1.93 4.36e-03 0.97 4.94e-04 1.93
2 · 44 3.96e-04 1.98 2.19e-03 0.99 1.24e-04 1.99
2 · 45 9.88e-05 2.00 1.10e-03 1.00 3.07e-05 2.02
2 · 46 2.39e-05 2.04 5.48e-04 1.00 7.18e-06 2.10

Table 1. L2-errors and experimental orders of convergence (EOC)
for the modified scheme (2D example)

triangles E
(1)
h,τ EOC E

(2)
h,τ EOC E

(3)
h,τ EOC

2 · 40 4.13e-02 2.91e-02 1.79e-02
2 · 41 2.05e-02 1.01 1.60e-02 0.86 6.34e-03 1.50
2 · 42 6.91e-03 1.57 8.57e-03 0.90 1.87e-03 1.76
2 · 43 2.51e-03 1.46 4.36e-03 0.97 4.91e-04 1.93
2 · 44 1.09e-03 1.21 2.19e-03 0.99 1.23e-04 1.99
2 · 45 5.19e-04 1.07 1.10e-03 1.00 3.05e-05 2.02
2 · 46 2.56e-04 1.02 5.48e-04 1.00 7.12e-06 2.10

Table 2. L2-errors and experimental orders of convergence (EOC)
for the classical scheme (2D example)
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tetrahedra E
(1)
h,τ EOC E

(2)
h,τ EOC E

(3)
h,τ EOC

5 · 80 1.26e-02 5.04e-03 4.21e-03
5 · 81 4.18e-03 1.60 2.48e-03 1.02 1.62e-03 1.38
5 · 82 1.64e-03 1.35 1.60e-03 0.63 5.03e-04 1.69
5 · 83 4.46e-04 1.88 8.33e-04 0.94 1.34e-04 1.91
5 · 84 1.14e-04 1.96 4.23e-04 0.98 3.39e-05 1.98
5 · 85 2.83e-05 2.01 2.13e-04 0.99 8.22e-06 2.05
5 · 86 6.54e-06 2.11 1.07e-04 0.99 1.74e-06 2.24

Table 3. L2-errors and experimental orders of convergence (EOC)
for the modified scheme (3D example)

tetrahedra E
(1)
h,τ EOC E

(2)
h,τ EOC E

(3)
h,τ EOC

5 · 80 1.25e-02 5.04e-03 4.21e-03
5 · 81 4.14e-03 1.60 2.48e-03 1.02 1.63e-03 1.37
5 · 82 1.80e-03 1.20 1.60e-03 0.63 5.04e-04 1.69
5 · 83 6.19e-04 1.54 8.33e-04 0.94 1.34e-04 1.91
5 · 84 2.51e-04 1.30 4.23e-04 0.98 3.40e-05 1.99
5 · 85 1.17e-04 1.10 2.13e-04 0.99 8.22e-06 2.05
5 · 86 5.74e-05 1.02 1.07e-04 0.99 1.74e-06 2.24

Table 4. L2-errors and experimental orders of convergence (EOC)
for the classical scheme (3D example)

7. Conclusion

In this work, we analyzed a modified BDM1 mixed hybrid finite element scheme
for advection-diffusion problems in two and three spatial dimensions. By using the
Lagrange multipliers – which are introduced during hybridization – for the dis-
cretization of the advective flux, second order convergence of the total flux variable
can be restored. The classical scheme BDM1 scheme, which makes use of the cell-
wise constant approximations of the scalar unknown in the discretization of the
advective term, fails to display this optimal-order convergence behavior if an ad-
vective term in divergence form is present: In the case of the classical scheme, the
accuracy of the approximation for the flux is limited by the (first-order) accuracy of
the approximation for the scalar unknown, while the Lagrange multipliers represent
a second-order approximation of the scalar unknown on the faces.
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