UNIQUENESS OF SOLUTIONS OF THE
DERRIDA-LEBOWITZ-SPEER-SPOHN EQUATION
AND QUANTUM DRIFT-DIFFUSION MODELS

JULIAN FISCHER

ABSTRACT. We prove uniqueness of solutions of the DLSS equation in a class of
sufficiently regular functions. The global weak solutions of the DLSS equation
constructed by Jiingel and Matthes belong to this class of uniqueness. We also
show uniqueness of solutions for the quantum drift-diffusion equation, which
contains additional drift and second-order diffusion terms. The results hold
in case of periodic or Dirichlet-Neumann boundary conditions. Our proof is
based on a monotonicity property of the DLSS operator and sophisticated
approximation arguments; we derive a PDE satisfied by the pointwise square
root of the solution, which enables us to exploit the monotonicity property of
the operator.

1. INTRODUCTION

In this paper, we are concerned with proving uniqueness of weak solutions of
the DLSS equation. The DLSS equation has originally been derived by Derrida,
Lebowitz, Speer and Spohn [13] while analyzing interfaces in the Toom model, a
probabilistic cellular automaton describing the evolution of a spin lattice. It also
arises as the zero temperature and vanishing electric field limit of the quantum
drift-diffusion equation, a drift-diffusion model for charge transport in semiconduc-
tors which takes lowest-order quantum corrections into account; for a derivation of
the quantum drift-diffusion equation see the article by Degond, Gallego, Mehats,
and Ringhofer [12] and the references therein. The quantum drift diffusion equation
reads

ug =V - (IVu~+uVYV)

where
eAVu

6vu
is the sum of the electric potential and the so-called quantum Bohm potential
and where 9 denotes temperature. Neglecting second-order (thermal) diffusion
and drift induced by the electric field, after rescaling we obtain the dimensionless
multidimensional DLSS equation:

1) w=-v- (L)

V=V,-

N

It can be rewritten as

u = —D*: (VuD*vu — Vvu® Vi)
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or equivalently

2

(2) 2 8t\/ﬂ—A2\/a+(A\/\/§) .

Initially nonnegative solutions of many fourth-order parabolic equations have the
tendency to become negative at some points of the boundary of their support,
thereby violating any comparison principle. In fact, for a large class of degenerate
fourth-order equations the convex hull of the support of the solution cannot in-
crease as long as the solution stays nonnegative (see e.g. the paper by Bernis [1]).
In contrast, the DLSS equation is one of the two prominent examples of parabolic
partial differential equations of fourth order which admit nonnegative global solu-
tions, the other example being the thin-film equation u; = — div(u"VAu), n € R*.
In the case of the thin-film equation, the diffusion term degenerates as u — 0. In
contrast, the DLSS equation is nondegenerate; nonnegativity of solutions is instead
preserved due to the equation becoming singular as u approaches zero. However,
as one expects for fourth-order equations, numerical examples [17] have shown that
the DLSS equation still violates any comparison principle.

For initial data ug € H' which is bounded away from zero, local in time existence
of solutions has been established by Bleher, Lebowitz and Speer [4] by a semigroup
approach. As long as the solution stays bounded and bounded away from zero,
uniqueness of these mild solutions is guaranteed. In case of periodic or no-flux
boundary conditions, mass is conserved.

Since no result on the preservation of strict positivity for solutions of the DLSS equa-
tion is known and the semigroup approach breaks down when the solution touches
zero, Jingel and Pinnau [19] constructed weak nonnegative solutions for nonneg-
ative initial data with ug — logug € L' in case d = 1 (i.e. one spatial dimension)
for certain Dirichlet-Neumann boundary conditions using an exponential variable
transform. These solutions were the first solutions of the DLSS equation known
to be defined globally in time. Subsequently existence of nonnegative weak global
solutions for d < 3 and more general initial data has been shown independently
by Jiingel and Matthes [18] for periodic boundary conditions and by Gianazza,
Savare and Toscani [14] for variational boundary conditions using different meth-
ods: Jiingel and Matthes employ a discretization in time, proving strict positivity
of the solutions of a regularized version of the elliptic equation which arises in the
discretization process and deriving entropy estimates which allow for the passage
to the limit. On the other hand, Gianazza, Savare and Toscani apply ideas from
the theory of optimal transport, viewing the DLSS equation as the gradient flow of
the Fisher information

[1vvap a

with respect to the Wasserstein distance.

The existence results are strongly based on entropy estimates which are derived
using repeated integration by parts. Jingel and Matthes have cast this method
into an algorithm [16]. They found the following entropies for the DLSS equation:
Set
E ::;/uv(. t) dx
Ty ’
in case v > 0, v # 1 and

E, = /u(.,t) logu(.,t) dz .
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Then in case of periodic boundary conditions the entropy inequalities

d
() £, 4+ )/|Am/2|2 dz <0
are satisfied by strictly positive smooth solutions u for some ¢(y) > 0 and all v € Cy,

where Cy is given by

O e (Vd—1)2 (Vd+1)?
TN Tdr2 T a2

in cased > 2 and by Cy := (0, %) in case d = 1. The constant ¢(vy) remains bounded
away from zero as long as 7 remains in compact subsets of Cy\ {1}. A time-discrete
version of these entropy inequalities which can be derived by the same methods is
the key step to the proof of existence of weak solutions for d < 3 by Jiingel and
Matthes in [18].

Moreover, in case d = 1 the methods by Jiingel and Matthes yield first-order entropy
dissipation inequalities for the DLSS equation. Let

2
E, ::/‘Vuo‘m’ dx .

For any fixed o with a € Ay, where A1 := (3(25 — 6v/10), (25 + 61/10)), and
any initial data wy with the appropriate regularity, Jiingel and Violet [21] have
proven existence of a weak solution of the DLSS equation for periodic boundary
conditions which satisfies the first-order dissipation inequality

@ g 1) | et fI(), (o) [

However, the mutual relation of the solutions constructed for different values of a
has remained unclear. As a consequence of our results, we are able to show that the
solutions for o € A; N (0, 2] coincide with the solution constructed by the procedure
of Jiingel and Matthes [18]

dr <0.

The existence theory for solutions of the DLSS equation is well-developed; one of the
few remaining open problems is the question of existence of solutions for Dirichlet
boundary conditions for both the solution u and the quantum Bohm potential A\/‘/g

in case d > 1.

As observed first in [19], the DLSS operator formally has a monotonicity property:
more precisely, given two solutions u; and wus in case of periodic boundary conditions

we obtain by formal calculations
Uz
h / Aw/ -, / A«/ dx

() (Var — Vuz)?* de = —
However, as shown by Jiingel and Matthes [18] we cannot expect uniqueness of weak
solutions without imposing additional constralnts on regularity: they have given an
example of a stationary nontrivial weak solution of class C* for the DLSS equation;
on the other hand, they have shown that for any given nonnegative measurable
initial data ug with ugloguy € L', a weak solution exists which converges to a
constant function as ¢ — co. Thus, the formal manipulations leading to (5) cannot
be justified for solutions with insufficient regularity. The counterexample is C'*,
but fails to have the regularity v/u € H?.

To the best of the author’s knowledge, up to now there is no rigorous argument
available for proving uniqueness of nonnegative weak solutions in some class of
sufficiently regular functions, where the class at the same time is large enough to
ensure global existence of solutions. In this work, we close this gap in the theory of
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the DLSS equation and establish uniqueness of weak solutions of the DLSS equation
in the class of functions u with regularity /4 € L(I; H*(Q)), u'/? € L*(I; H*(Q)).
The solutions constructed by Jiingel and Matthes [18] belong to this class; this is
not stated explicitly in their paper, but is an easy consequence of their methods; see
below. The weak solutions constructed by Jiingel and Matthes are defined globally
in time; they impose only the mild condition [ uglogug dz < co on the initial data.

Our method for proving uniqueness works as follows:

e To exploit the monotonicity property of the operator, it is necessary to
prove that weak solutions (as defined in Definition 1 below) also satisfy the
equation (2) in a weak sense.

e Therefore we would like to test the weak formulation of the DLSS equation
(6) with the test function % This attempt however faces two major
obstacles:

a) We only have u € W([0,T]; H=2(Q2)); therefore our test function
must belong to L>([0,T]; H?(Q2)). However, we only know /u €
L2([0, T]; H3(2).

b) It is not known whether w is strictly positive. Thus the denominator
of the test function may vanish somewhere.

Therefore we use the regularized test function

Y
Pé*< /7p5*u+6> 5

where ps denotes a mollifier with respect to space, and pass to the limits
0 — 0 and e — 0.

e Due to u € WH1([0,T]; H72(Q)), by the properties of mollification our
regularized test function belongs to L°°([0,T]; H%({2)). Moreover, the reg-
ularized test function allows the left-hand side of the PDE (i.e. the term
involving the time derivative) to be rearranged; see Lemma 13 below.

e When letting 6 — 0, convergence of the right-hand side (i.e. the terms as-
sociated with the stationary DLSS equation) cannot be proven directly due
to a lack of integrability of the terms on the right-hand side. This is not
unexpected in view of obstacle a): The mollification has been introduced to
overcome the lack of integrability (with respect to time) of spatial deriva-
tives of the test function; thus, when trying to remove the mollification, the
issue surfaces again.

However, making use of the special structure of our test function, we
can nevertheless prove convergence: In Lemma 14 below, we e.g. show that
terms of the form

1
\VpPs* U+ €

(with f € L2([0,T7]; L*(Q))) converge strongly in L?([0,T]; L*(2)) as § — 0,
even though u ¢ L*([0,T]; L>°(£2)). Therefore, such terms have better
convergence behaviour than deduced by just looking at the integrability of
Vi f.

e The next step consists of letting ¢ — 0. Here the additional regularity
ut/* € L*([0,T]; H*(Q)) is needed to prove convergence of the terms on
the right-hand side (see especially Lemma 11). In particular, we show that

for u with this additional regularity, the term % is well-defined and

[ps * (Vu f)]
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belongs to L'([0, T]; L*(£2)). Note that formally

A/l 2

|A/ul _y Au1/4+4|Vu1/8|2
Vu

which is the reason why the regularity u'/* € L2([0, T]; H?(f2)) is required.
We finally obtain the equation (11), which is the desired weak formulation
of (2).

e Having derived the evolution equation for \/u, we proceed to prove unique-
ness using the monotonicity property

d
& [ v - v ai

=~ [ VRiavEP + R ABE - 20 AV dr <0,
1

Note that a-priori the terms of the form \/‘/g|A\/E|2 are not known to
belong to L([0,T]; L'(2)). However, they have the “right” sign, which
implies that we do not need to care about their integrability. At the level
of the approximation argument, this is reflected in the usage of Fatou’s
lemma in the proof of Theorem 5 below (an approximation argument is
necessary again since we cannot use /uz as a test function in (11), given

that % only belongs to L([0,T]; L(2))).
In the present paper we also construct solutions with weak initial trace, i.e. solutions
for initial data which is a nonnegative Radon measure with finite mass. This is done
by replacing the initial data by a mollified version pgs*ug, allowing for the application
of the existence result by Jiingel and Matthes in [18]. By proving entropy decay
estimates we then show that the weak second derivative of a weak solution can
be controlled in terms of the total mass of the initial data. These estimates then
provide sufficient compactness for the passage to the limit 6 — 0. For a result
in the same direction for the thin-film equation, see the paper by Garcke and Dal
Passo [11]. As a consequence of our uniqueness result, if two weak solutions with
weak initial trace have the regularity inferred from the entropy inequalities and in
addition satisfy

9

lirrl/‘\/ul(.j)—\/ug(.,t)‘2 dr =0

t—0

they coincide globally. Unfortunately, we do not know whether the latter conver-
gence assumption can be weakened or even dropped. Typical concepts used to
obtain uniqueness of solutions with weak initial trace already experience difficulties
in the case of nonlinear second-order equations (see e.g. [10]).

Additionally, we show that our proof of uniqueness extends to the case of quantum
drift-diffusion models in which different species of charge carriers interact via the
electric field. These models are given by

AV
Vi

dyi—v. (ﬁiVui n QiuiVVel) —ev. <uiv

1<i<N
dt ) =t=a

N
AV ==Y Qu',

i=1
where N denotes the number of species of charge-carriers and where @); € R,
¥; € RT, Q; € R, ¢; € Rt are constants. Existence of solutions for such models has
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been shown e.g. by Chen, Chen and Jian [9], Chen and Chen [8], and Chen and Ju
[7]-

Finally, we show how uniqueness of solutions can be proven not only for periodic
boundary conditions, but also for combined Dirichlet-Neumann boundary condi-
tions.

Throughout the paper, we use standard notation for Sobolev spaces. By C2°(§2) we
denote the space of smooth compactly supported functions on Q2. We refer to the d-
dimensional torus by the notation [S']?. We shall use the abbreviation I := [0, 00).
The notation L} (I; X) shall be used to denote the space of all mappings v : I — X
which belong to LP([0,T]; X) for all T > 0. By ps we denote a standard mollifier
with respect to space (i.e. defined on RY) with supp ps C B;(0). By RM(Q) we
denote the Banach space of all Radon measures on {2 with finite total variation.

2. MAIN RESULTS

Jiingel and Matthes [18] have introduced the following definition of weak solutions
of the DLSS equation with periodic boundary conditions (recall that I = [0, 00)):

Definition 1. Suppose Q = [S|1. Let ug € L*(Q) be given with ug > 0. We
call u € LY(I; L (Q)) N WHL(T; H=2(Q)), v > 0, with \/u € L*(I; H*(Q)) a weak
solution of the DLSS equation with initial data ug if for all ¢ € L>=(I; H*(Q)) and
all T > 0 we have

T T

(6) / (Opu, 1) +/ /(\/ED2f— VvV ® V) : D*) da dt =0
0 o Ja

and if in addition the equality u(.,0) = ug(.) as elements of H=2(Q) holds.

In the same paper the following existence result has been established:

Theorem 2 (Jiingel and Matthes [18]). Let Q = [S1]¢ and d < 3. Let ug € L*(Q)
be given with uglogug € LY(2). Then there exists a weak solution of the DLSS
equation with initial data ug.

The solutions constructed by Jiingel and Matthes have the additional regularity
ul/* € L2(I; H2()); see below.

For Dirichlet-Neumann boundary conditions, we define the following notion of weak
solutions:

Definition 3. Let © ¢ R¢ 1 < d < 3, be a CY' domain. Let uy € L'()
be given with ug > 0. Let a nonnegative measureable function upg be given with
Vg € L2 (I; H2(Q)). We call u € L2 (I; L () N W2 (I; H2()), u > 0, with

loc loc loc

Vu € LE (I; H3(R)), a weak solution of the DLSS equation with initial data ug and

loc

boundary data up if for all € L>=(I; H3(Q)) and all T > 0 we have

T T
2 — u u) 2 X =
(7) /0<0tu,w>+/0 /Q(\/ﬂDf Vva® V) : D*) de dt =0

if Vu— \Jug € L% (I; H3(Y)) is satisfied, and if in addition the equality u(.,0) =

loc

ug(.) as elements of H=2(S2) holds.

The author is not aware of any proof of existence of such weak solutions; however,
since by formal calculations one can derive energy estimates which would imply
the stated regularity and even u/4 € L2 (I; HZ () (at least for boundary data
which is regular enough and strictly positive; see the appendix for a sketch of the
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calculations), it seems likely that such solutions exist. Proving existence of such
weak solutions may be the subject of future work.

For the quantum drift-diffusion model we introduce a similar definition:

Definition 4. Let Q = [S']¢, 1 <d <3, orlet Q CCRY, 1< d <3, beaCh?
domain. Assume that we are given nonnegative functions ul € L1(Q). If Q # [S']¢,
let additionally nonnegative measurable functions uly with \/u'y € L} (I; H*())
be given.

Let u' € L2 (I; LY(Q)), 1 < i < N, be nonnegative. Assume that we have Vui €

loc
L} (I; H*(Q)) and (u)V/* € L2 (I; H*(Q)) and that u'logu’ € LS (I; LY())

loc

is satisfied. Let Vo € LS (I;WH1(Q)). We then call (ut,...,uN,Vy) a weak

solution of the quantum drift-diffusion model if for all i € {1,...,N} and every
¥ € L*(I;C?(S2)) with suppy CC 2 x I we have

—/ngqut—/om/ﬂqptui dt

:f/oo/\/L?DZ\/E:D%/;f(V\/J@V\/J):DQipdxdt
0 Q

—/ / 9;Vu' - Ve da dt —/ / Qiu'VVy -V da dt
0 Q 0 Q
if for every ¢ € C=(Q) and a.e. t > 0 we have

N
/ﬂ VVar () -V =3 Q' () dz =0,
=1

and if (in case Q # [S1?) we have Vui — \/uly € L}, (I; H3(Q)) for all i.

Note that existence of such solutions has not yet been established. In the case of
periodic boundary conditions or in case of strictly positive and regular boundary
data, formal calculations again yield energy estimates which would imply the stated
regularity and even u!'/* € L2 (I; H(2)).

loc

Our main results read as follows:

Theorem 5. Let d < 3. Suppose we are given two weak solutions ui, us of the
DLSS equation on Q = [S']¢ with u}/? € L*(I; HX(Q)) and u)/* € L*(I; H2(Q))

i i
and initial data ug,, ugy. We then have for a.e. to > t1 > 0 and a.e. t3 > 0 in
case t; =0

/Q’\/ul(.,tg)f mg(.,tz)f dacg/g‘\/ul(.,tl)— \/u2(.,t1)‘2 d .

In particular, weak solutions with the stated regularity (and therefore the solutions
constructed by Jiingel and Matthes [18]) are unique within this class of regularity.
As a corollary we obtain:

Corollary 6. Given 8 € (£(25—6v10), 3] and some nonnegative ug € L'(S")

with ug/z € H1(SY), there exists a weak solution of the DLSS equation with ini-
tial data ug in the sense of Definition 1 which satisfies the zeroth-order entropy
estimates for all v € C; = (0,%) and the first-order entropy estimates for any

a € (B, 3]

We prove existence of solutions with weak initial trace which only near ¢ = 0 fail
to satisfy the regularity required for uniqueness:
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Theorem 7. Let Q = [S']¢, 1 < d < 3. For any initial data pu € RM () with
w >0 and p(Q) < oo there exists a solution of the DLSS equation which satisfies
u € L®(I; LY(Q)), u'/? € L} ((0,00); H2(Q)), u/* € L*(I; H*(Q)) and u(.,t) = p
as t — 0 in the sense of weak-x convergence of measures. The function u satis-

fies the DLSS equation in the sense that (6) holds for any v € C°(2 x (0,00)).
Additionally, for any v € Cy with v > 1 the entropy decay estimate

[ty da <€) @) (7407014 41)
Q

holds.

We obtain an analogous uniqueness result for the case of Dirichlet-Neumann bound-
ary conditions:

Theorem 8. Let d < 3. Given two weak solutions uy, us of the DLSS equation
with common boundary data up € L}, .(I; L*()) with Jug € L} (I; H*(Q)) and

with the additional regularity u;/4 € L? (I; H*(Q)), we have the stability estimate

loc

2 2
/Q’\/ul(.,tz)f\/UQ(.,tg)’ dxg/ﬂ’\/ul(.,tl)f\/ug(.,tl)’ dz

for a.e. to >t; >0 and a.e. to > 0 in case t; = 0.

A similar result can be proven for weak solutions of the quantum drift-diffusion
equation:

Theorem 9. Let d < 3 and let uy, us be two weak solutions of the quantum drift-
diffusion model with \/u} € L, .(I; H*()), (u§)1/4 € L} (I; H*(Q)) and initial

loc loc
data ul,, ub,. Then the following stability estimate holds for a.e. to >t; >0 and
a.e. to9 >0 in case t; = 0:

/Qé Vi (o) = yfus (o 12) e
<exp (Cg;/:2 1+ H\/@(,U :2(9) + "@(,t) ;(Q) dt)
/Qi \/i(wtl) - \/@(.,tl) i de
i=1

3. UNIQUENESS OF SUFFICIENTLY REGULAR WEAK SOLUTIONS

Since we want to show that the distance fQ(\/uT — /u2)? dz is nonincreasing for
sufficiently regular weak solutions u; and us, we would like to derive an evolution
equation for y/u. Formally, the DLSS equation is equivalent to (2) as observed by
Bleher, Lebowitz, and Speer [4]. Our challenge now is to prove that a weak form
of (2) holds for weak solutions in the sense of Definition 1.

We need the following regularity lemma which in a slightly different form is due to
Lions and Villani [22]:

Lemma 10. Given u € H?([S]?) with u > 0, we have the estimate

/ |Vul/?|* dz < C(d)/ |Au|? dz .
[51]4

(st
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This lemma is a special case of a family of similar inequalities; see Lemma 26 in
[5]. We provide a proof of the lemma in the appendix, the proof of this special case
being significantly shorter than the proof of the general case.

Additionally, we need the following convergence properties:

Lemma 11. Given some nonnegative u with \/u € H?([S*]%), we have vu + € —
Vu in H?([S1)?) as e — 0.

Moreover, we have 0;0;v/u =0 a.e. on {u = 0}.

For nonnegative u with u'/* € H?([SY?), we have (u + €)'/* — u/* in H?([S']?)
as € — 0.

Moreover, we have 9;0;u'/* =0 a.e. on {u = 0}.

The proofs of the previous lemma and the next two lemma are standard and can
be found in the appendix.

Lemma 12. Let p; denote a standard mollifier with respect to space. If fs — f
strongly in LP(2) as § — 0, then ps x fs — [ strongly in LP(€)) as 6 — 0.

Lemma 13. Let ps denote a standard mollifier with respect to space. Let u €
WhUIL[H2(Q)]). Define Q5 = {z € Q : dist(z,dQ) > 6} (note that Q5 = Q

loc

in case Q = [SY?). Then we have ps x u € WE(I;C2(Q)) and for any test

loc

function & € L}, (I; L*(Q)) satisfying J,c;supp&(.,t) CC Qs and any T > 0 the

loc
representation

T T
/0 ((ps * u)g, &) dt :/0 (ug, ps * &) dt

holds.

The following convergence properties are central for our result:

Lemma 14. Let ps denote a standard mollifier with respect to space. Suppose
that we are given a measureable function u on Q = [SY?, u > 0, with u €
L*(I; H*(Q)) and u'/* € L*(I; W'4(Q)). Then the following convergence properties
hold:

a) We have V [(ps * u+ €)Y/4] — V [(u+€)1/4] strongly in L*(I; L*(Q)) as
0 —0.

b) It holds that D* [(ps * u+ €)*/?] — D? [(u + €)'/?] strongly in L*(I; L*())
as § — 0.

c) We deduce that \/ﬁ (ps * (\/u0;0;\/u)) — \/ulT-e (\/u0;0;+/u) strongly
in the space L?(I; L?(2)) as § — 0.

d) We obtain the strong convergence W (ps * (u1/46i81\/118ju1/4)) —

(u+i)1/4 ul/ 49,0\ /udjut/* in L3 (I; L3 () as § — 0.

Proof. We only prove the first assertion; a sketch of the proofs of the remaining
assertions (which are mainly analogous) can be found in the appendix. We have

1
V | (ps *u—|—e)1/4} = Z(p(; s u—+¢) N (ps ku+€) .

Pointwise convergence a.e. to the desired limit is immediate. Denote by S2(t) the
set on which the difference between V [(ps * u + €)'/4] (1) and V [(u+€)'/4] (., 1)
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exceeds 7. We can estimate by Hoélder’s inequality

L V(s ut )l 2 = £ ]/pm )Vuly.t) dy]

< (/pa(x — )|Vl (y, t) dy>1/4 , (/pé(x e dy)3/4 |

This implies that

1
/Xsé(t)(fc) Z(st*u+e)*3/4V(p5*u+e)
®) S/Xé‘é@)(””)/%(x —y)|Vu Yy, t) dy dz

- / V) (g, 1) / xsi (o (@)ps(z — ) de dy .

4
dx

For a.e. t € I and any fixed 7 > 0 we see that by the definition of S%(t) and
by pointwise convergence a.e. of V [(ps * u + 6)1/4] (.,t), the Lebesgue measure of
S2(t) tends to zero as § — 0. Thus we obtain xgs() — 0 in L' as § — 0 for a.e. ¢
and any 7 > 0. By Young’s inequality for convolutions we deduce that

/ng(t) (z)ps(z —y) dv — 0

in L' as § — 0. Since it is immediate that | [ xss ) (2)ps(z — y) dz| < 1, using
dominated convergence we see that for any fixed 7 > 0 and a.e. t € [

ti [ 1Vt 0t) [ xssio (@pate — ) do dy =0

and therefore (by (8))

4

9) im [ xgs() () dr=0.

1 _
550 1o xut+ TV (ps xu+ )

By dominated convergence, we have

4

10 lim [ xgsp(x Viu+e)/4 dz=0

( 50 ®)
— T

for any 7 > 0. Recalling the definition of S2(¢), using (9) and (10), and finally
letting 7 — 0, for a.e. t € I we obtain V [(ps * u+ €)Y/4] (,t) = V [(u +€)¥/4] (1)
strongly in L*(Q) as § — 0.

Inequality (8) implies (for 7 = —1)

1 4
/ ’4(% xu+ )1V (ps ¥ u+ )

dz < / Va4, ) dy

Arguing by dominated convergence (note that we have just proven convergence
in L*(Q) for ae. t > 0), we see that V [(ps xu+€)*/*] — V[(u+e)/4] in
LA(I; L*(Q2)) as 6 — 0. This establishes the first assertion. O

We now derive the evolution equation for \/u.

Lemma 15. Given any weak solution u of the DLSS equation on Q = [S']¢ with
u'’? € L*(I; H*(Q)) and u** € L*(I; H*(Q)), we have for any T > 0 and any
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b€ L°(I; W2 (Q)) N WL (T Lo(Q)) with (., T) = 0
T
(11) —2/0 Q\/ﬂwt dxdt—Q/Q\/%w(.,O) dx

:/OT/Q\%mﬁF dxdt—/oT/QA\/ﬂAwdxdt.

Since 9;0;+/u = 0 a.e. on {u = 0} by Lemma 11, the term ﬁ|A\/ﬂ|2 is well-defined
a.e.. As shown below, the required regularity is sufficient to deduce that this term
belongs to L*(I; L'(2)). Note that the formula in the lemma may also be used as
a definition to yield another notion of weak solution of the DLSS equation.

Proof. The first basic problem which we have to tackle is the low regularity of the
solution: we only know u; € WHH(I; H=2(Q2)) and u € L?(I; H*()) which is not
enough for inserting functions of u as test function in the weak formulation. We
overcome this problem by a regularization via mollifications.

Suppose that ¢ € C°(2 x [0,T)). Let ps denote a standard mollifier with respect
to space. We start with a smooth strictly positive function u and calculate using
repeated integrations by parts (for details see the formula B1 in the appendix)

| (Vap*vi-vyievya)  p* (p5
—- [ avasva (Pé '
+ [ avasvi (ons

*¢> ax
Vps*xu+e€
1/)) dx

\VpPs*u+€

dx

v

Vi
+2/QA\/EV\/E- (pg*\/;m) dx

AY
v (o )

—Z/QA\/E\/E <p6*(paﬁ’+e.vm>) da
_z/ﬂwav\/a- <p5*( vm)) i

—/QA\/ﬂ\/ﬂ (pé* <¢A\/m>) dx

ps*u-—+€

ps*u—+e€

+2 [ AvVuyu 3V\/p5*u+e-v\/p5*u+e>> dz .
Q

<pé*<¢
\VpPs*u+ €

By approximation (e.g. mollification of \/u), the equation holds for all u with
Vu € H*(Q) and infu > 0. Letting @ := v+ and § — 0, by Lemma 11 and
the regularizing effect of mollification the equation holds for all nonnegative v with

Vu € H3(Q).

We now plug in the test function ps * \/Li into the weak formulation of the

ps*UtE€
DLSS equation (see Definition 1). Note that the function \/ﬁ belongs to

Wh(I;C%(Q)) (this is a consequence of ps * u € Wli’,l(I;C’Q(Q)) by Lemma 13);

loc c

thus, it especially belongs to C? (I;C?(£2)). Therefore it follows using Lemma 13

loc
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and the previous calculation (for details see formula B2 in the appendix)

T
2/ /7/1t\//)5*u+edxdt +2/Ww(.,0)dx
0o Ja Q

T
Vi
= AvVuVyu - —— | dx dt
/0 Q VUV (pé*vpé*u‘FE) !

+/0 /QA\/E\/H (pé*pg*u+e) dz dt

_Q/OT/Q(W(mMa)) (/JLvm) de dt

—2/0T/Q(p5*(v\/ﬂA\/ﬂ)) . (¢wm> da dt

pPs*uU+€

_/OT/Q(”‘S*WM@)) <p5*¢u+€Am>dxdt

! ¥
+2/0 /Q(p(;*(\/ﬁA\/ﬁ)) (Wv\/p‘s*”+6'vx/p5*u+e> dx dt .

We now let § — 0. For this step, we need the regularity u'/? € L2(I; H*(Q))
which implies v'/* € L*(I;W*(Q)) by Lemma 10. By this regularity and ¢ €
L (I;W2°°(Q)), from Lemma 12 we immediately obtain convergence of the first
two terms on the right-hand side since is uniformly bounded and converges
pointwise a.e.. In order to show that

1
pPs*UTE

T
2/ /wt\/u—i—edx dt+2/ Vuo + €e(.,0) dx
0o Ja Q

Vi
Vu+ €

T
A
+//A\/ﬁ\/ﬂ Y dt
0o Ja u+€

dr dt

:Q/OT/QA\/&V\/zI-

U+ €

(12) —Q/OT/Q\/EA\/E AL -Vvu+edr dt

T
—2/ /A\/EV\/E~ v VvVu+ € dr dt
0o Ja

U+ €

T v
_/ /\/ﬂA\/ﬁ AViTFe da dt
o Jo U+ €

T
+2/ /\/ﬁA\/ﬂ VVu+e-VvVu+ e dr dt
0o Ja

3
U+ €
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holds, we still need to ensure convergence of the remaining four terms on the right-
hand side. To this end, let us rewrite

—2/OT/Q(p5*(\/ﬂA\/ﬂ)) (W.vm> d dt

ps*uU—+€

= 2/OT /Q (ps * (VVuAVa)) - (¢v\/,(m) dz dt

pPs kU + €

_/OT/Q(W*(\/QA\/E)) (/%;/’AW) dz dt

U+ €

' ¥
+2/0 /Q(pé*(\/mﬁ)) (vaé*““'Vquﬂ) dz dt

(VuA/u)) (paﬂjfe)l/‘l V(ps *u+e)/* da dt

T
1
4 - -
/0 /Q\/W(pé*
T
_ 1/4 1/4 L 1/4
8/0 /Q<P5*<u AvVuVu )) ( )3/4V(p5*u+e) dzr dt

ps*uU-—+€

T
1
[} S T o VRAVE) e de

T
Y 1/4 1/4
—I—S/ / * (VuAVu)) ———=V (ps xu+¢ -V (ps *xu+€ dz dt .
; Q(Pé ( ) T (ps ) (ps )

Convergence of these terms is now immediate from the assertions of Lemma 14.

We now intend to let € — 0 in formula (12); here the additional regularity u/* €
L%(I; H*(Q)) which implies u!'/® € L4(I; W*(Q)) by Lemma 10 will be required.
We rearrange (12) to get

T
2/ /wt\/u—i—edx dt+2/\/u0+ez/)(.,0) dx
0o Ja Q

T
:_/ /\/EA\/E Y AVaTe du dt
0o Ja +e

u

+/0 /Q\/EA\/E\/mdxdt

+2/0T/QA\/EV\/E.\/ZL+E

—Q/OT/QﬁAﬁ A N e

U+ €

dr dt

VvVu + e dx dt

—Q/OT/QA\/EV\/E-

U+ €

T
+2/ /\/ﬁA\/ﬂ VVu+e-VvVu+ e dr dt
0o Ja

3
U+ €
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which is equivalent to (recall that by Lemma 11 we have D?\/u = 0 a.e. on {u = 0})

2/ Yeivu + € dx dt+2/ Vg + € ¥(.,0) dz

¢u3/4
// 1/4 +e)3/4(u+ )1/4A\/u+edxdt
/ /AIAw
SV
8 — AVuv 1/8.“761 dt
* /0 /{2”1/4 \/ﬁ “ Vu+e *

T 3/4
! u VY 1/8
_8/0 /szu1/4A\/ﬂ(u+e)5/s -V(u+e)t® da dt

ddt

’ 1 1/8 1/)“5/8 1/8
732/ /WA\/EJVU/ 'WV(UJFG)/ dx dt
3/4
+32/ / 1/4 ¢u )3/4V(U+€)1/8'V(U+6)1/8 dx dt .

Note that the equation
1

(13) AV =2 Aul/t 48 Vul/® . vy l/®

u
holds pointwise for any smooth strictly positive u; thus the same equation holds
pointwise a.e. for any nonnegative u with u'/4 € L?(I; H*(Q)) by approximation
(recall Lemma 10 and Lemma 11). In particular, the term ul—lﬂA\/ﬂ belongs to
L3(I; L*(Q)). By Lemma 11 and (13), we get convergence of WA\/U + € to
—+ Ay/u strongly in L(I; L*(Q2)) as € — 0.

Using Lemma 11 to pass to the limit ¢ — 0, we get
2/T/¢tﬁdz dt+2/ Vi (., 0) dz
/ / AV Y AV d i
+/O AVulY dz dt
+8/ / —= AVuVulE Ve da dt
- 8/ / ——AVu u!/8Vy - Vul/® da dt
— 32/ / TMA\/ﬂVul/S VU dx di

+32/ / ——AVu YVu/t  Vul/S da dt

The undesireable terms cancel and we see that the remaining terms yield the desired
right-hand side of (11). O

Now that we have an evolution equation for \/u, we can proceed to the actual proof
of uniqueness.
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Proof of Theorem 5. Obviously, the functions u; and wuy satisfy the conditions of
the previous lemma. By the lemma, we see that we have \/u; € WHi(I; H=2(Q))
since v € H2(Q) implies v € L>(Q) (as d < 3); moreover, /u;(t = 0) which is a

priori the evaluation of the continuous representative of v/u € Wh(I; H=2(2)) at
t = 0 is identified as ,/ug;.

Take a smooth nonnegative test function £ € C2°([0,7)) and consider the test
function 1 := & - ps * (ps * \/uz). Since \/u; € L>°(I; L?(£2)) due to conservation of
mass, we have 1) € L (I; W2°°(Q)) N Whi(I; L>°(€)) and therefore it constitutes
a valid test function. We obtain since ((ps * )¢, ¢) = (¢4, ps * ¢) which is easily
verified using the definition of 0;

_2A /Q(pd*\/QTl)gt(P&*M) dx dt—Q/Q(p(;*M)S(O)(pé*\/@) dx
T
=2 [ (elos x VD) (s < )
A L SRV TN = I o
_/o ,/Qg N AV [® dr dt /0 /gng\/TAPJ ps * \/uz dzx dt .

Repeating the same calculation with u; and us interchanged and adding, we obtain

T
4 [ [ (s VI3 + Vi) dndt ~ 4 [ (ps ¢ VTTIEO) 03+ V3)
0 Q Q
(14)

T T
9 / (E(ps * /i), (ps * v/az)e) dt —2 / (E(ps * /), (ps * v/an)e) dt
B T pé*pé*\/@ 2 _ T % %
[/ P LR A i da [ [ s+ avamais - v as ai
T Pé*ﬂé*\ﬂTl 2 . T N m % i "
o [ PO A o i [ [ (o ALy - i) do

The left-hand side can be rewritten as

T
2 [ [ (s Vs x Vi) da dt 2 | €O)(ps x Vw5 /R) d
0 Q Q

We know that ps * ps * \/u; converges to \/u; pointwise a.e.: For a.e. ¢t we know
that a.e. point x is a Lebesgue point of \/u;(.,t); moreover, ps * ps is a function
supported in Bas(0) with ||ps * ps||= < C(d)é~¢ and [(ps * ps)(y) dy = 1. Thus
we get

(05 % ps * @) (@, 8) — v/ ()
_ | [ (05 ps)(& = )0, 1) — V(e 0) dy

<c@f. VD) ViG] dy

which implies the convergence for a.e. x (since a.e. point is a Lebesgue point).
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Thus, letting § — 0 and using Fatou’s lemma, equation (14) becomes
T
- 2/ / &t\/u1/ug dz dt — 2/ £(0)y/ug1 /o2 dx
0 Jo Q
T T
1) = [eavap aa- [ [ eAvmav i
0 Ja WVur o Ja
T T
+/ /gﬂm\/m? dx dtf/ /gA\/qTQA\/a dx dt
0o Ja VU2 0 Ja

[ L) s ()

Uy 172
In case t1 =0, set £(t) =1 for t < ta —¢, £(t) =0 for t > to and let £ be monotone
decreasing on [ta — €, to] with |&] < % In case t; > 0, set () = 0 for ¢t < t; and
t>ty;set £ =1fort; + € <t <ty — e and let £ be monotone on the remaining
intervals with |&| < % Letting € — 0, we obtain since a.e. ¢t > 0 is a Lebesgue

point of [ \/u1\/us dx
2‘/Q \/ul(.7t2)\/u2(.,t2) dxr Z 2/9 \/ul(.,tl)\/’u,g(.,tl) dzx

for a.e. to > t; > 0 and a.e. t3 > 0 in case t; = 0. This finishes the proof since we
have

2
dx dt .

/Q‘\/ul(.,tg) _ mg(.,@)f do
:/Qul(.,tg) d:c+/9u2(.,t2) dfo/Q\/ul(.,tz)\/lm(th) dx
§/Qu1(.,t1) der/uQ(.,tl) dxf2/ﬂ\/u1(.,t1)\/u2(.,t1) dx
:/Q‘\/ul(.,tl)f \/u2(.,t1)’2 dz

where we have used the fact that mass is conserved. O

4. REGULARITY OF THE SOLUTIONS CONSTRUCTED BY JUNGEL AND MATTHES

In this section, we shall gather some results by Jiingel and Matthes regarding the
regularity of their solutions to the DLSS equation constructed in [18]. The entropies
~v < 1 are not treated explicitly by Jiingel and Matthes, though this case follows
using entirely the same methods. Since the regularity inferred from the zeroth-order
entropy for v = % is crucial to our uniqueness result, we explicitly treat the case
~v < 1 here.

Theorem 16. The solutions constructed by Jingel and Matthes satisfy the zeroth-
order entropy estimate (3) for all v € Cy, with Cy defined as below formula (3).

Proof. We start with the time-discrete regularized formulation in [18] which (for a
single timestep of length 7 > 0) reads

1
(16) ;(uE —w) =— §D2 . (ucD*log u,) (A?logu, + logu,)

_ €
2
+ édiv(|V10gue|2V10guE) .
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1(/u2dz/w7dz>
2T Q Q

< - c/ |Au)/?? do — €Ay — €As
Q

For v > 1, the estimate

is shown in [18] in the course of the proof of their Lemma 11, where A; and A

are bounded from below uniformly in € > 0. Passing to the limit ¢ — 0, by lower

semicontinuity of the norm in L?()) and the strong convergence ul’? = /% in

L?(Q) (note that the inequality provides the necessary compactness) we obtain

1
— (/ u? dxf/w”’ dz) S—c/ |Au2|? dx
21 \Jao Q Q

For v = 1, using the above convergence arguments the estimates by Jiingel and
Matthes imply the corresponding inequality

1
— (/ ulogu dzf/wlogw daz) < fc/ |Au/?? dx
2T Q Q Q

The case 0 < v < 1 is not treated explicitly by Jiingel and Matthes; however, using
similar arguments it is easily derived: By concavity of 7 for 0 < v < 1, we have
w? < u) +yu) " H(w — u.), which implies u) — w? > (u, — w)yu) 1. We therefore
obtain by plugging in ) ! as a test function in the weak formulation of (16) (this
is possible since u. € H?(f) is bounded away from zero, see [18])

1</u2dm—/w7d:p>
17T \Ja Q

(17) > — / (ul2D*ul/? — Vul/? @ Vul/?) : D2u) 7t da
Q

— é/ 4Alogue Au) ™! +|Vlogue*V(logu) - V(ul™') dz
Q

- E/ u? " logu, dx .
2 Ja

A straightforward calculation shows that the second integral can be rewritten as

4
]dm

dr <0

1
f/ 4AuY " Alogu, + |Vioguc*V(logu,) - V(u)™1) da
Q

8

oy [t (A TVEPY L, |
~26-1) [ 0 (W 2[5 >+7<2 w\ﬁe

which implies nonnegativity of the second term on the right-hand side in (17).

4

Since u, is smooth enough and bounded away from zero, the results of Jiingel and
Matthes (equation (6) in [18]) imply that the first integral on the right-hand side
of (17) can be estimated from below by

- / (ut/2D*ul/? — Vul’? @ Vul/?) : D*u) ™t da > c(’y)/ |AuY/?|? dz
Q Q
as long as v € Cy N (0,1). Using the estimate

1
—f/uz_llogu6 dx > —/ C(y) dz
2 Ja Q
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which holds since v < 1, we therefore obtain from (17)

S (/ 7 dx—/wV dx) > 0(7)/ |Au)/?)? dox — C(v)e
T Q Q

for all v € Cy N (0,1). Passing to the limit, using that u} — u” in L?*(Q) since
u) — Y for all ¥ > 1, 7 € Cy4, we get

1 </ u” dxf/uﬂ d:c) Zc(’y)/ |Au2|? dx
T \Ja Q Q

This proves the entropy inequality for a single time-step in the time-discrete for-
mulation.

We denote the iterated time-discrete solution with time-step 7 by u(™). Multiplying
the above estimate by 7 and summing over all timesteps which correspond to times
< T, we obtain

L Cor[E]) o= [ dw+c<w>t§jf [ A ke R e

Note that the solution in [18] is constructed by taking the limit of a subsequence
u(™) which converges strongly in L'([0,T]; L*(R2)) for every T > 0; by lower semi-
continuity of the L2(I; H?(2)) norm with respect to convergence in the sense of
distributions, this implies that the limit u satisfies

T
/u"’(.,T) dx > / ug dx—i—c(’y)/ / |AWY2|? dx dt
Q Q 0o Jo

for a.e. T > 0 since for a.e. T > 0 we have (7 (., T) = u(.,T) in L*(Q). We thus
see that the entropy estimate carries over to the limit 7 — 0. O

5. FIRST-ORDER ENTROPY INEQUALITIES

Using our uniqueness result, we now show that in case d = 1 any weak solution of
the DLSS equation which belongs to our class of uniqueness satisfies the first-order
entropy estimate for any a € 4; N (0, %]

Jingel and Violet have constructed solutions which satisfy the a entropy estimate
for one value of v < 1; however, given u with u € L>®(Q), u®/?,u®/* € L*(I; H*(Q))
and setting w := u®/* they use the reformulation

4
(u®)y = —2 (4 — a) [wwm(w2)m — 4w|ww\2wm + 4d(wwy (Wwy, — |wz\2))m]

4 (4 - i) (3 - i) g P (Wit — [0, ) — AP (g — 1))

to define a notion of weak solution of the DLSS equation. We will refer to this
definition as a weak solution.

Recall that by Lemma 10 the above regularity implies u®/4, u®/® € L*(I; W14(Q)).
It is then straightforward to verify that (u®), € L'(I; L*()) + L3 (I; H=2()) for
any « weak solution (i.e. the weak time derivative of u®* can be represented as a
sum of one element of L'(I; L*(€)) and one element of L3 (I; H~2(12))).

Jiingel and Violet [21] prove the following theorem:

Theorem 17. For any strictly positive ug € H(S') and any o € A; N (0,1],
there exists an a weak solution of the DLSS equation with the regularity u®/? €
L2(I; H3(SY)) N L®(I; HY(SY)), u®/S € LS(I; Wh6(SY)), logu € L2(I; H?(SY)).



UNIQUENESS OF SOLUTIONS OF THE DLSS EQUATION 19

The initial data is attained in the sense of u®(.,t) — ug strongly in H=2(S') as
t — 0. Moreover, for ta > t1 > 0 we have the estimate

to
/ |<ua/2>x|2dx < elo) [ [ 00Ol 0
Sl

Note that Jiingel and Violet do not explicitly state the full entropy inequality in
their theorem, but it follows easily from their proof (pass to the continuum limit
in inequality (21) in [21]). They do not answer the question whether an o weak
solution conserves mass (at least for o # 1).

Lemma 18. Given a € (0,3] and some nonnegative ug € L'(S') with ug
HY(SY), any a weak solution satisfies u'/?,u'/* € L*(I; H*(S')) and is also a
weak solution of the DLSS equation in the sense of Definition 1. In particular, the
solution is mass-preserving.

Proof. 1t is obvious that u has the regularity properties required for being a weak
solution since we have u®/* € L?(I; H*(SY)), u®/8 € LYI;WbH*(S")) and u €
L>(S* x I) by definition.

Let ¢ € C°(Q x [0,T)) be smooth. We now plug in ps * [1(ps *ua)(lf‘l)/o‘] as
a test function in the definition of o weak solutions. The left-hand side of the
parabolic equation (i.e. the terms involving the time derivative) can be rearranged

to yield
—a/ (p(;*u)l/a .0 x—oz/ / ps * u 1/ )y dxdt
51 51

since u® € WH(I; H=2(SY)) € C°(I; H=2(S')) and u®(t = 0) = u§ in the sense
of H=2(S') which implies (ps * u®)(t = 0) = ps * u$, where the first convolution is
to be read as convolution with a distribution.

We leave the right-hand side of the parabolic equation (i.e. the terms associated
with the stationary equation) unchanged and pass to the limit 6 — 0. As u® has
enough regularity and I*TO‘ > 1, everything converges to the appropriate limit. We

obtain
_/ uot (., dx—/ /thdxdt
g1
:/ / -2 (4 - ) [t (W2) i — A0 [0 [P05g] =0
0 S1 o

+2 <4 — i) A wwy (Wwgy — |w$|2))(u(1_a)/aw)z

4 4

—4 (4 - ) (3 - ) [Wa |2 (Wty — |we|?)uE=/ %
o o

— 4w (Wwyy — \w$|2)(u(1_0‘)/“1/))m dx dt .

For w smooth in space, a straightforward but tedious computation shows that the
right-hand side becomes exactly the expression occuring on the right-hand side in
the definition of weak solutions (6) (see Jiingel and Violet [21]). For w with w €
L2(I; H2(SY))N LA WHA(S1))N L (S x 1), i.e. the case we are interested in, the
equality follows by approximation: Take the convolution of w with a mollifier and
pass to the limit; we obtain convergence of ps*w in L*(I; Wh4(SY))NL2(1; H?(SY)).
Note that the expressions u}s/g = (ps * w)>* and ugl_a)/a = (ps * w)4(1*a)/0‘2
converge in L2(I; H?(SY)) N LA(I; W4(S1)) as the exponents are greater or equal
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to 2; additionally these expressions remain uniformly bounded in L>(S* x I) and
converge a.e.. This finishes the proof. U

The existence result by Jiingel and Violet now immediately generalizes to nonneg-
ative initial data as the regularity inferred from the « first-order entropy estimate
provides sufficient compactness to pass to the limit:

Lemma 19. Let d =1, a € Ay, o < 5. For any uo € L*(S") with ug/Q € H'(SY)
there exists a weak solution to the DLSS equation with the additional regularity
u®/? € L2(I; H3(SY)) N L>(I; HY(SY)), u®/S € LS(I; WY5(SY)). The initial data
is attained in the sense of u(.,t) — ug strongly in H=2(S') ast — 0. Moreover,
for ta > t1 > 0 we have the estimate

to to
/51 (u2), 2 da| < —c/t /S 1(u9), [0 + |(u®/2)y0a? da dt
t1 1

Proof. The proof is easy, replacing ug by ug + ¢ and then passing to the limit.
Note that as a < %, the entropy estimate provide sufficient regularity to obtain
the evolution equation for \/u. Using the Aubin-Lions lemma to deduce strong
convergence of /u in L?(I; H'(S')) and reflexivity to obtain weak convergence of
Vuin L2(I; H?(S')), we may pass to the limit in the weak formulation. For details,
the reader is asked to consult the section on construction of solutions with weak

initial trace.

Note that the regularity property logu € L?(I; H*(S')) which holds for strictly
positive initial data may get lost in this process. O

Proof of Corollary 6. This is a consequence of the fact that ug ZeH L(S1) implies

ug/Q € H'(S') for any o > B, Lemma 19, the existence result by Jiingel and
Matthes [18], Theorem 16, and the uniqueness result Theorem 5. 0

6. DECAY ESTIMATES FOR THE ENTROPIES

We now derive the entropy decay estimates which will provide the necessary com-
pactness for the construction of solutions with weak initial trace.

Lemma 20. Given any solution of the DLSS equation on Q := S' with uOO‘/2 €
HY(SY) which in addition satisfies the o first order entropy estimate, we have

(18) IVu*/2(, )13 < Clluoligat ™2
fora <1 and
(19) ||Vua/2(.,t)||%2 < C||U0||%1 max(t71/2*d(a*1)/4,t71/2)

m case o > 1.
Proof. By Holder’s inequality we have

2/3
/ (Vu®/?? do = 9/ w3\ V82 dr < 9 (/ u® dw) (/ |Vu/66 da:)
Q Q Q Q

In case a < 1, employing Holder’s inequality we obtain since S' has finite Lebesgue
measure

2a/3 1/3
(20) / |Vu/?|? do < C (/ u d:c) (/ |Vu/6 dx) .
Q Q Q

1/3
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Recall the Gagliardo-Nirenberg-Sobolev inequality
-6
lollze < ClIDo|Z - [0l 17" + Cllol e

which holds for any Lipschitz domain (C' depending on the domain) when 6 is

determined by
1 1 1
-=0(-—= 1-60)—.
p (T d>+( )q

If @« > 1, we use the Gagliardo-Nirenberg-Sobolev interpolation inequality with
v=u*% p=6,1r=6,q9= g, d = 1 and therefore 0 = Z—;i to yield

/ |Vu®/?? da
Q

(a—1)/(a+5) 6a/(a+5) e
(/ |Vu/6 dw) (/udm) +</udm) 1
Q Q Q
1/3
: </ |Vu/66 da:)
Q
(4a)/(a+5) (a+1)/(a+5)
<C (/udm) (/ |Vua/66da?)
Q
2a/3 1/3
+C (/ u dx) ( |Vu/6 da:)
Q Q
4a/(a+5) (a+1)/(a+5)
(21) <Cmax l </ u da:) </ |Vue/66 d:z:) ,
Q Q

</Qudx>2a/3 (/Q |Vu®/66 dx>l/3] :

The entropy estimate states that for t5 > ¢; > 0 we have

/ |Vu/?? dx fc/ / IVue/S|% da dt

which yields in case a <1 (by 20)

to to —2a 3
< —c/ (/ u da:) ( |Vu®/2? da:) dt
t1 t1 Q Q

and in case a > 1 (by 21)

to to —4da/(a+1) (a+5)/(a+1)
/ \Vu®/?? dz| < —c/ min (/ udm) </ |Vu®/?? da:) )
Q t t Q Q
—2a 3
(/ u da:) (/ |Vu/?? dac) ] dt .
Q Q

By the comparison principle, this differential inequality implies that the entropy
is bounded from above by the solution of the corresponding differential equation.
Noting that mass is conserved, we see that in case @ < 1 we are looking for a
solution of an ODE of the form

2/3
<C

|Vu®/2? da
Q

d ___¢b
@f* af
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for some a > 0, b > 1 constant and f(0) = fo > 0. It is well-known that the
solution to this ODE is given by

1) = (ab =D+ 7)< (a1

The latter estimate follows since b > 1 which implies that (.)'/(1=% is strictly
decreasing.

Thus, in case a < 1 we have the estimate
/ Va2 da < CfuglSat~22 .
Q

In case o > 1 the situation is a bit more difficult: as long as [, |Vu/22 de >

(fou dz)”, we have b = 22 and a = ¢([yu dx)_4°‘/(a+l).

sponding differential equation, we see that

Solving the corre-

(22) / [Vu/2? da < max(C|[uo||F1t~ V™, [Jug||F1) -

Q
As soon as [, [Vu®/?2 dz < (fudz)®, we get b = 3 and a = ¢ ([, u dx)fm
Defining ¢y to be the time at which [, [Vu®/2|? dz drops below ([, u dz)” and
again solving the corresponding differential equation, we get

(23) / VU2 da < Cful|% (t — to) />
Q

for t > to. By (22) we get to < C. Using (22) for ¢ < 2ty and (23) for t > 2t(, we
obtain

/ (Vu/?% da < C|lug||$: max(t~(@FD/4 ¢71/2)
Q
for C only depending on «, but independent of u and wy. O

Remark 21. Decay estimates of this kind are well-known in the theory of parabolic
partial differential equations; in the case of the thin film equation they have been
established in [2] and [3] and subsequently been used in [11] to construct solutions
for nonnegative Radon measures with finite mass as initial data.

Lemma 22. Let v > 1. Given any solution to the DLSS equation on Q = [S1]¢
with ug € LY () which satisfies the zeroth-order v entropy estimate, we have

/m(.ﬂs) dz < C(d, )| |uol| ]2 (t_d("*_l)/‘l—i-l) .
Q

Proof. By the Gagliardo-Nirenberg-Sobolev inequality with v = uY/4, p =4, r = 4,

_ 4 0 = =1
q = 7 and thus § = T1rg e have

i EleEyect
/ W de < Cful| T (/ /A dx) + Ol .
Q Q

The entropy inequality gives for a.e. to > ¢1 in case 7 > 1

/u"(.,tz) dac—/u’*(.,tl) dx

Q Q
tg t2

< - c/ / |AW/2)? dx dt < —c/ / |V /4t da dt
tl Q tl Q

2] o4y CICE
< —c/ ]| 7D [/ o di — 0||u||gl] dt
t1 Q +
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As long as [, u? dx > 2C||u||] ., we have

d(v=1)+4

tz _ 4y d(v—1)
/ u’(.,t2) do — / u’(.,t1) do < —C/ TIPS [/ u” dx} dt .
Q Q t Q

Proceeding as in the proof of the decay estimates for first-order entropies, this
differential inequality yields the bound

/uv(.,t) dz < Clluo|[]. (t*d<%1>/4+ 1) .
Q

The “1” which appears on the right-hand side is due to the differential inequality
only being valid as long as [, u”(.,t) dz > 2C||ul|], = 2C|ug||].; afterwards we
only know that [, u7(.,t) dz is nonincreasing. O

Remark 23. Our entropy decay estimates are probably optimal in case a > 1,
v > 1, at least on small timescales: A self-similar solution to the DLSS equation
on Q =R is given by
1 =2
Ula, 1) = — e o1
(8m2t)*

(see e.g. [17]); a straightforward calculation shows that the self-similar solution dis-
plays entropy decay exactly as predicted by our estimates. Since for small timescales
and highly concentrated initial data, a bounded domain may be regarded as a “per-
turbation” of the R, it seems likely that our decay estimates are optimal for o > 1,
v > 1.

Remark 24. For bounded domains, the entropies decay exponentially with time as
shown by Jingel and Toscani [20], Caceres, Carrillo, and Toscani [6] as well as
by Jingel and Matthes [18]; this of course provides significantly more information
regarding large-time behaviour, but almost no information on immediate smoothing
effects of the DLSS operator.

7. EXISTENCE OF SOLUTIONS WITH WEAK INITIAL TRACE

We now turn to the construction of solutions with weak initial trace using the
estimates from the previous section.

Proof of Theorem 7. The proof relies on the existence result by Jiingel and Matthes
for initial data in the Llog L Orlicz class. We replace our initial data p by pe * p
where p. is the usual smoothing kernel. Let us denote the unique solution of the
DLSS equation with initial data p. * u by wue.

The entropy decay estimates from the previous section in conjunction with the
regularity inferred from the entropy estimates then provide sufficient compactness
for the passage to the limit € — 0: For ¢ > 0 small enough such that 1+ 6 € C,,
we have

(24) [)u2+5(.,t) da < C(d, 5)[u(Q)]1+5 (tféd/z; + 1)

since ||pe * || = (). Thus we have

T
/ / |Au£1+6)/2|2 + |VU£1+6)/4|4 dz dt < C(d, 5)[M(Q)]1+6 (to—éd/4 + 1) .
to Q
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We obtain by the entropy estimate for v = 3 and Holder’s inequality since € is
bounded as well as Lemma 10

//|Au1/42+|Vu1/84dxdt<C/ V2(,T) di < Clluc(- T[4 = Clu(@)? .

Note that Aut’> = 2ul/* Au/* + 8U2/4|Vui/8|2. Using the formula AulT/? =

(1426) /4 146)/4
(24+26)ul 2 A/ 4 (2+428) (14 20) (e [Ful FO/ P2
inequality we get a bound of the form

in case u > 1, by Young’s

T
/ / |Aut/?|? 4 |Vul/4)t d dt
to Q

T
O(d,a)/ /|Au§/4|2+\wg/8|4+\Aug1+5>/2|2+|vug1+5>/4|4 da dt |
to Q

From the equation

[ [ [ 5

which holds for all ¢ € C°(2 x (to,T)) (see (11)), we infer that (since d < 3)

Ue

T
dx dt —/ / AVu Ay dx dt
to Q

T
(NP R NN N
to Q

and therefore
T
107 Villia oy < [ [ 180+ (Va3 do dt
to JQ

We now pass to the limit ¢ — 0. By the Aubin-Lions Lemma, we infer that for a
subsequence ,/u. converges strongly in L?((t,T); L?); let us denote the limit by
V/u. Passing to a further subsequence we infer (again by the Aubin-Lions Lemma)
that V\/u. — w strongly in L?((to, T); L?); the latter limit is immediately identified
as Vy/u. In addition we may assume that \/uc — \/u weakly in L?((to,T); H?).

We see immediately that these convergence properties are sufficient to pass to the
limit in the equation

//s¢td$dt+/ /\/uiD2 — Ve ® Vi) : D dz dt = 0

for any ¢ € C°(Q X (tg,T)). The properties ut? € L?((to,T); H?) and ut* €
L?((to,T); H?) carry over to the limit by reflexivity of L?((to,T); H?), strong con-
vergence of u in Ll((to, T); L), and the uniform bounds on the norms.

Thus, setting ty := +, T := k, k € N, and applying a diagonalization argument we
see that we can enforce that u1/2 € L2 ((0,00); H?), u'/* € L?(I; H?); furthermore,
u is a weak solution of the DLSS equation on every time interval (¢g, 00) with ¢y > 0.

It remains to show that the initial trace of u coincides with our measure .
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To this aim, we rearrange the weak formulation of the DLSS equation to yield for
Y e CX(Q2x10,1))

/ /ert dx dt+/(p€*u)w( 0) dx
:/ / 1—u£1+5)/2D2u£176)/2 : D* dx dt
/ / T ul/?(Vud’? @ Vul=9/2) . D% dx dt
1 _ 6

7/ /(Vu§/2®vu§/2) : D% da dt
Q

or equivalently

/01/Quewt dx dt+/§2(p£*ﬂ)¢(.’0) da

1
:/ / LugH‘”/?DQuS—‘”/Q : D% dx dt
0o Jal—0

! ) 1
B (146)/2 (1-8)/2y . 2
+/0 /{2((1_5)(14_6) (1+5)(1—6)>(VU€+ ® Vu! ): D* dw dt .

Integrating by parts twice we obtain

(25) /1/ ety da dt+/(p6*u)z/}(.,0) do
/ / ultT9/2 D2, (1=0)/2 . D2y dy: dt—/ /02 Yue A2 da dt .

This implies u, € WH1([0,1); H=*). We estimate using (24)

/ / 1426 dxdt </ C d 5 1+25(t725d/4+1) dt < C(d)[U(Q)}1+26
0

if 6 < 2. Thus w972 s hounded uniformly in L2([0,1); L2) if § is sufficiently
small. Usmg the fact that \/uc — /u strongly in L? ((0,1); L?), we deduce that

w2y (149)/2 gtrongly in L2(]0,1); L?). Knowing that ul'™%/? — 4(1-9)/2
weakly in L?([0,1); H?) due to the entropy estimates (backward in time), we see
that the terms on the right-hand side of (25) converge when passing to the limit
€ — 0. The terms on the left-hand side also converge. We therefore obtain

1
/ /uwt dx dt+/1/1(.,0) d
0o Jo
1 1
z/ / 1 (8)u1/2 D2 (1=9/2 . D2y da dt —/ / co(0)uAyY dx dt .
0o Jo 0o Jo

In particular, we have u € W11([0,1]; H=*) which implies u € C°([0,1]; H*).
Moreover, we see that the equality u(.,0) = u as elements of H~* holds. Thus,
u(.,t) — p strongly in H~* as ¢t — 0; moreover, u(.,t) is bounded uniformly (with
respect to t) in RM (since mass is conserved and since u is nonnegative). This
implies u(.,t) = p as t — 0. i

8. UNIQUENESS FOR THE QUANTUM DRIFT-DIFFUSION EQUATION

In this section, we shall show how our method of proving uniqueness extends to
the case of quantum drift-diffusion systems, where several species of charge carriers
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are coupled via the electric field. In order not to overburden notation we present
the proof of uniqueness for a single species; the reader will check immediately that

' 2
the arguments generalize to systems, deriving estimates for >, [ ‘\ /ul —Juy| dx

instead of [ |/u1 — \/7TQ|2 dz.

Proof of Theorem 9 in case of periodic boundary conditions. As the proof is mostly
analogous to the case of the DLSS equation, we only describe the differences.

In the derivation of the evolution equation for v/u (proof of equation (11)) we see
that on the right-hand side we get the additional term

T ~ Y
7/0 /Q(WUHQWVCZ) - Vps * <W) da dt

/T/ﬁ( *Vu)~idxdt
o Jo ps \VpPs*u+ €

T
Y 1/4
2 Y Vu) - ———mmm———=V dx dt
* /0 /Q (b5 * V) (ps *u+ €)3/4 (ps *u+e)7 do

- (T "
+Q/ /VuVVEl (pé*pa*u_'_e) dx dt
Y
+Q/ /UAVel<ps f*u+e) dx dt .

We now intend to pass to the limit 6 — 0. The term ¥Vu belongs to ngoc(f; L3(Q))
since vu € L2 (I; H*(Q)) and v/u € L} (I; L°°(2)) N LS. (I; L?(2)) which implies
Vu € L (I; LA(Q)). Thus ps * 9Vu converges to Vu strongly in LlOC(I;Lg(Q)).

By Lemma 14, we know that V(ps * u + ¢)/4 converges to V(u + €)'/ strongly in
LY(Q x I).

Since AV, = Qu, we see that AV, € L? (I;L*(R2)). Thus we get uAV,, €
L (I; LY(Q)).

loc

We have Vu = 2y/uVy/u and therefore Vu € L2 (I;L%(Q)) (due to Vy/u €
L (I; HY(Q)) C L} (I; L°(Q)) and vu € L2 (I; L*(2))). Knowing that VV,, €

loc loc
L} (I; L5(Q)) (by regularity theory and d < 3), we deduce that Vu - VV, €
(I; L1()).

Ll
In the limit 6 — 0 our additional terms therefore become

loc
/ /19Vu
+2/ /19Vu 3/4V(u—|—e)1/4 da dt
¥
Q | Vu VVa e do di
U
Q
/ / 2

—Q/O /Qﬁvvel-

loc loc

da: dt

dac dt

Vf Vz/1—219 ‘f V\/ﬁ VVu+ e dx dt

o VvVu+ e do dt .
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Letting € — 0, we see that in the analogue of equation (11) we get the following
additional terms on the right-hand side:

T
- / / 20V - Vb — 8IVul/* - Vul'* o do dt
0 Q

T
—Q/ /\/ﬂVVez-Vw—VVel-V\/ﬂz/dedt
0o Jo

In the proof of the stability estimate (the analogue of Theorem 5), the following
differences occur: Inserting & - ps * (p5 * | /uz) as a test function in the equation for
Ju1, we get the additional terms

T
+2/0 f(t)/ﬂ—w(ps % /1) - V{ps * /iz) +z9p“*’\’/‘5%\/@|vm|2 dz dt

T
f@/ f(t)/ﬂx/avvell'V(Pa*Ps*\/@Tz)*VVen'V\/’LTl (ps % ps * /i) de dt
0

on the right-hand side.

Adding the equation with 1 and 2 interchanged and passing to the limit 6 — 0,
using Fatou’s Lemma we see that in the analogue of inequality (15) the additional

terms
2 / " e /Q 9

0
T
-Q ; §(t)/ﬂ(vvezl — VVas) - (Var V/ug — \/uz V/uy) da dt

2
U2 U1

ERENORYE

U

dx dt

appear on the right-hand side. The first term is nonnegative. Choosing & as in the
proof of Theorem 5 and passing to the limit, we obtain for a.e. t3 > t; > 0 and a.e.
to > 0in case t; =0

I+1I Z:‘/Q ‘\/ul(.,tg) - \/Ug(.,?fz)‘2 dx
(26) va [ /Q (VWer = VVern) - (viir Vi3 — itz V/ir) da dt
g/ﬂ\\/ul(.,tl)—\/uQ(.,tl)\ dz |

It remains to derive a bound on the second term on the left-hand side. We rearrange

/t i / (VVarr — VVaao) - (viir Yz — iz Vi) dae dt

= [ (Vs = WVean) - (Vi i Vi 9
VAL — Vit Vo) da dt
=2 [ [V (Vi = V) (V7 Vi) e
t1 Q

- / 2 / (AVity — AVis) V/ilr (v — /) dr dt
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which implies

1] SQ'@'/t (Va2 + IV DI~ +1) / [V = Val? da dt

~ t2
+10] / / AV, — AVl da di
t1 Q

to 1

SO o | EVATEU G [ o | VAT GO | 8

=|Q|-(IIT+1V +VI).

+1Q| /Q|v¢a|2\vvel1 CVVil? de dt

By the equation satisfied by V,;; we have

ta T
W [ [l deat= [ [ (v - v (VP o de
<C [ VARG + IVEGOlE-) [ Vi - v do .

The reader will check that this estimate also works (with minor changes) in case of
multiple species with different charges, yielding a bound of the form

t2 . . . .
v < [ (IOl + G0l ) -3 [ - g

It remains to derive a bound on VI. By classical theory of elliptic equations (see
e.g. [15]), we have

2
dr dt .

[IV (Verr — Vera) ||z < Cllug — ugl|r2

as long as p < dQ—_dz. Thus

h |1V /3
VIS/ m V(Verr = Vo) |70 dt
T+ v~ + g |V Ve = Verz)llzs

b2 V. /uil?
g/ I 5 [z 5 /|U1—U2|2 dx dt
n LIV~ +llVuellie Jo

ta
sc/ ||wu7||%q/ i — /il d dt
t1 Q

for g with %4—% = 1. Since p < 2% it follows that all ¢ > d are admissible. Again,

a corresponding equation holds in the case of multiple species.

Putting these results together, we have

to
[ i - vl s
Q t1
to
@ <0 [ IV + IVl + IVl [ Vi - vl ded

to
<o [* IVl + IVl [ v - vl e d
t1 Q

where the latter inequality follows by the Sobolev embedding theorem. We note

that for d < 3 we have d2—fl2 > 6 > d. Gronwall’s inequality now implies the assertion

of the theorem. O
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9. NONPERIODIC BOUNDARY CONDITIONS

The uniqueness result extends to the case of combined Dirichlet-Neumann boundary
conditions. We shall need the following analogue of Lemma 11:

Lemma 25. Given u € H*(Q) with u > 0 and ¢ € C2°(Q), we have the estimate

/¢4|Vu1/2|4 dz gC(d,Q)/ ¢*| Aul? da:+C(d)/ Vol dr .
Q Q Q

Proof. We calculate for smooth strictly positive u

1
/ 0! 2|*" do = ¢ / u”?|ul*¢* du
Q Q

1
_3 u”oul?0%u ¢t da + 7/ utOul?0u Dip 3 d .
16 Jq ' 1 /g
By Young’s inequality we obtain
(28) / |9;ut/?| ¢t dx < C/ |0ssu|?p* dm—l—C/ u?|0;0|* dx .
Q Q Q

For smooth u we have

/ |Aul?¢* dz = —/ VAu-Vu ¢* de —4 [ AuVu -V ¢° dx
Q Q Q

:/|D2u\2 ¢4dx+4/Vu-DQu-VgZ)qﬁgdx—4/AuVu-V¢¢3dx
Q Q Q

which gives using Young’s inequality
(29) / |D?ul? ¢t da < C’(d)/ | Au|?p? dm+C(d)/ |Vul?| V|2 ¢? dx .
Q Q Q

Taking the sum with respect to 4 in (28) and using (29), an application of Young’s
inequality to treat the last term yields the desired result for smooth u. For general
u, the inequality again follows by approximation. 0

Lemma 26. Given any weak solution of the DLSS equation with Dirichlet-Neumann
boundary data in the sense of Definition 3 with the additional reqularity u'/* €
L2 (I; H%(Q)), for any ¢ € C(Q x [0,T)) the equation

loc

(30) Q/OT/Q\/ﬂwtdxdtQ/Q\/zTowdx

:_/OT/QA\/aAwdde/OT/QA\\gmda:dt

is satisfied.

Proof. The proof is analogous to the case of periodic boundary conditions, since 1)
is assumed to be compactly supported in ). O

Lemma 27. Let Q C R? be a bounded C*' domain. Then there exist C > 0 and
C(2) > 0 such that for all T > 0 the following Poincare type inequality holds for
any v € HZ(Q):

72|Vof? + 74 f? dr < C(Q)/ D[ dz .

/Qﬁ{x:dist(;z,BQ)<T} QN{z:dist(z,00Q)<C7}

Moreover, for any 7 > 0 and any v € W0174(Q) we have

Aot dz < C(Q)/ Vol* da .

/Qﬂ{z:dist(z,aﬂ)<‘r} QN {z:dist(z,00Q)<C1}
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Proof. Let U be an open subset of R9~1. Assume that (possibly after a rotation)
we have a function g : R¥~! — R of class C''! and some p > 0 such that
Qui={z:(z1,...,24-1) EUNO<zg—g(T1,...,24-1) < u} C
and
{(z1,. s xa—1,9(x1, ..., 2q-1)) : (1,...,2q-1) EU} CIN .

Then it follows easily (by integrating the one-dimensional Poincare inequality with
respect to 1, ..., 4_1) that for every 7 > 0 and every v € HZ(Q) the estimate

/ 7 2Vo2 + 774 w)? da
Qun{z:zqa—g(z1,...,2a-1)<T}

(31) gC(U)/ |D?v|? dx
Qun{z:zqg—g( Eg—1)<T}

holds.

Our domain Q being C!, we see that for every z € 0f) there exists an open
neighbourhood V' of z such that (after possibly a rotation) the above conditions

are satisfied for some U and some g, where Qy C V and z € {z: (21,...,24-1) €
UNxg = g(x1,...,24-1)} Moreover, for § > 0 small enough we have for every
x € Bs(2)
dist(z, 00) = min Tq — s Ya—1)|? Ti — ;|2
( ) L lza — 9(y1,- -+, Ya—1)| +Z| i — Yil

Setting h(x) := |zqg — g(z1,...,2q4-1)] and r(z,y) = \/Z?:_ll |x; — y;|? and taking

into account that dist(z, 9Q) < h(z), we get for any € > 0 (w.l.o.g. we may assume
that € < 1)

dist(x, 09)

- - Y1)+ Ly)2
Y€ Bas (2 )Hrl(lr y) <dist(z,80) Ve =g ya—1)|* +r(z,y)

> min [ min r(z,y),
y€OQNB2s(2),eh(z)<r(z,y)

Viza =gy, ..., yd1)2‘|

min
y€IQNBas (z),r(x,y)<eh(x)
> min [eh(x), (1 —€ sup |Vg(y1,...,yd_1)> h(az)} .
y€EB2;(2)

Using the fact that g € C*! (which implies that Vg is bounded on bounded subsets
of R471) and choosing € small enough, we get

|2a — g(z1,. .., 24-1)] < C(z,6) dist(z, 9Q)
for any x € Bj(z), if 6 > 0 has been chosen small enough.

Combining this estimate with (31) we see that for any z € 9Q we have some 6 > 0
and some neighbourhood V of z such that for any 7 > 0 the estimate

/ 72| Vol? + 774w da
QNBj; (2)N{z:dist(z,0Q)<7}

<C(2,Q) / D202 da
QNVN{z:dist(z,00Q)<CT}
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holds. As this assertion holds for any z, using a covering argument our lemma
follows.

The second inequality is proven analogously. O

We are now in position to prove uniqueness of solutions for the DLSS equation with
Dirichlet-Neumann boundary conditions. As the proof is mostly analogous to the
case of periodic boundary conditions, we only indicate the relevant differences.

Proof of Theorem 8. Take some nonnegative cutoff ¢ € C°(§2) and some nonneg-
ative £ € C2°([0,00)). We insert £ - (ps * (¢(ps * /uz))) into (30) to obtain

2/0 L(Pé*ﬁ)téQS(Pa*x/sz)dedf

T
— [ ] AV Alos + 65+ vim) do db
- /Q'A*/ff-g-<pa*<¢<p5w@»dxdt.

Interchanging u; and ug and adding, we get
—2/;/95@ (ps * /i) (ps * /i) da dt
=2 [ 6006 (ps # Va0 s Vol 0)
:—/OT/QNW\/@-£~A<¢<p5*\/@> da dt
—ATAA<p5*m>-f-A<¢<pa*m>> do dt
# [ ERE ot v o a
+/OT/95AW*/?2 (05 * (Blps * /) do i

Again passing to the limit § — 0, we obtain by the usual convergence properties of
mollifications and Fatou’s lemma

—2/5/95@@@ o dt =2 | €00/l 0V l0) do
z/OT/QAm-s-Awmm:cdtféA@-f-A@@)ma
+/0T/Q|A\/*/g|2g¢\/@dxdt+/;/g%\/?2wmdxdt
(&):—A?LAﬁwfﬂw¢w+WWVWMdmﬁ
_/OT/QA\/@-g-(Até\/171+2V¢-V\/ﬂ)dmdt

T
+/ / 2Ny — LAy
o JalVu Uz

2
€ ¢drdt.
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Inserting ¢ - € in (7) and integrating by parts, we obtain

T
[ [&owdear— [ €00 w0 ds
0 Q Q
T
—— [ [ € (v vV VA6 - AV i o Vi) s D) de
0 Q
T
— [ [ evvam- vy ao+ vimayias
0
+ 2A/ur V/ui - Vé +2V/ui - D*\Juy - V) dx dt
T
— | [ evvam-vyamas+ vaavaas
0
F2AVaL VL - Ve — Viar - Vi Ag) de dt
T
= [ [ (mavmas+2avm Yy Vo) dodr.
0 Q

Adding the corresponding equation for ug and substracting inequality (32), we get

T 9 2
[ [ v - vl deat- [ €00 [Vaalo0) - Va0 da
0 Q Q
(33) g—/o /QA\/E-é‘-(Aqﬁ (Vitr — Vi) + 296 - V(i1 — /i) da dt
T
[ ] AV a6 (Vi - v + 290 V(v - Vi) de dr.

Let T € (0,1). We now choose ¢™ € C°(Q2) with 0 < ¢™ < 1 such that |[V¢T| < C(TQ)
and |A¢T| < @ as well as ¢ (z) = 1 for any xz € Q with dist(z,9Q) > 7 hold.
Such a family of functions exists since 2 has C'! boundary (one can construct such
functions in each coordinate chart of € which contains a part of 9 and glue them

together using a partition of unity).

As by our definition of solution we have \/u; — \/us € L2 (I; H3(S)), we therefore

loc

obtain from (33), the properties of ¢7, Holder’s inequality, and Lemma 27

T
[ [ao v - vl i [ 0o [Vato) - Vil d
0

T
SC'(Q)~/O x/Qﬁ{m:dist(w,BQ)<T} < (|A\/u>1| " ‘A\/ED
(2N — |+ V(i — ) de de
T 1/2
<o) [ e ([ iprvar + 10ty i)

1/2
A/ DX(Jar — i) de | dt |
QN{z:dist(z,00Q)<C7}

We know that \/u; € L7 (I; H*(2)). The second factor of the integrand thus tends
to zero as 7 — 0. The ¢” converge to 1 pointwise a.e. on {2 and are bounded by 1.

We obtain by dominated convergence (applied to both sides of the inequality)

_/T/gt IVar — Vil dz dt—/g(o) ‘\/ul(.70)—\/u2(.,0)‘2 dz <0 .
0 Q Q
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The result now follows by an approximation argument analogous to the one used
in the case of periodic boundary conditions. O

Proof of Theorem 9 for Dirichlet-Neumann boundary conditions. The case of quan-
tum drift-diffusion equations with Dirichlet-Neumann boundary conditions is dealt
with using the methods from the proof of Theorem 8 and Theorem 9 in case of
periodic boundary data. However, in the derivation of the analogue of (26), besides
some terms similar to the terms on the right-hand side of (33), the additional terms

ta
+219/ /v\/av(pf Vi + Vi - VT du dt
t1 Q
ta
+Q/ /ﬁlm (Vs + VViaa) - V7 dar dt
t1 Q

tQ - t2
— / / IV (u1 4+ ug) - Vo do dt — Q /(u1VVell +usVVea) - Vo7 da dt
t1 JQ t1 JQ

appear. These terms can be rewritten as

+219/2/Qwa-v¢7 (ViTz — /i) + Vi Ve (Vi — i) de dt

-Q | VL (Vor = Vi) Ve, - VOT de dt
)

ty

to
-Q /Q\/E (Vuz — Vu1)VVey - Vo© do dt .
t1

By our Poincare type argument, the first term dissappears in the limit 7 — 0.
Regarding the second and the third term, we may estimate using Holder’s inequality
and the properties of ¢”

ta
[ [ Ve = v e v s dt\
t1 Q
‘\/m— iz
T

SCEVurll oo (1 ,t20:2) |V Verr [ 2t ,2):24) ‘

L2([tr,t2]5 L) .
Knowing that V\/u; € L7 (I;L*(Q)) (by /u; € L}, .(I; H*(2)), the Sobolev em-

loc loc

bedding, and d < 3) and that VV,; € L? (I; L*(2)) (since V., € L}, (I; H*(Q)) by

loc loc

AVy € LE (I; L?(£2)) and the homogenous Neumann boundary condition for V,;),
the term seen to vanish in the limit 7 — 0 due to the Poincare type inequality in

Lemma 27 and our condition \/u; — /up € L2 (I; H3(Q)) C L2, (I; W, ().

loc loc

In particular, for our solution we obtain precisely inequality (26). From this point
on, we may proceed precisely as in the proof of Theorem 9 in case of periodic bound-
ary data (the only integration by parts in the process is possible since homogenous
Neumann boundary conditions are imposed on V;). O

10. CONCLUDING REMARKS AND OPEN PROBLEMS

We have seen that the question of uniqueness of solutions of the DLSS equation
can in fact be decoupled from the question of preservation of strict positivity, as
conjectured by Jiingel and Matthes [17]. The regularity inferred from the entropy
estimates for y =1 and ~ = % is sufficient for uniqueness.

Using our uniqueness result, we have seen that the weak solutions constructed by
Jingel and Matthes satisfy most entropy estimates which are known to hold for
smooth strictly positive solutions. Furthermore we have shown existence of weak
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solutions of the DLSS equation with weak initial trace which satisfy all known
entropy estimates and therefore only at ¢ = 0 may fail to have the regularity
required for uniqueness.

Finally, we have sketched how to extend our methods to cover the case of the full
quantum drift-diffusion equation and how to treat certain non-periodic boundary
conditions.

As a last point, we would like to mention a few selected problems which have been
left open:

e It would be interesting to know whether the solutions obtained by Gianazza,
Savare and Toscani using methods of optimal transport belong to our class
of uniqueness.

e We currently do not know how to find a notion of solution strong enough
to guarantee uniqueness of solutions with weak initial trace.

e It is not clear whether the condition for uniqueness u'/2, u'/* € L2(I; H?(Q2))
can be weakened, e.g. to u'/? € L?(I; H?(Q2)). Note that the counterexam-
ple by Jiingel and Matthes fails to have the latter regularity.

e For d > 1 and Dirichlet boundary conditions for both \/u and the quan-
f?
as attempts to modify the entropy inequalities in a straightforward way
to cover this case fail. Moreover, the question of uniqueness also remains
open in this case since it is not clear how the mollification arguments could
be extended; the cutoff argument used for Dirichlet-Neumann boundary
conditions is obviously inappropriate here.

tum Bohm potential the question of existence of solutions is open

APPENDIX A

We provide a sketch of the formal computations leading to an entropy estimate for
the DLSS equation in case of nonhomogeneous Dirichlet-Neumann boundary data,
at least for sufficiently smooth strictly positive boundary data up and sufficiently
smooth domains 2. Formally inserting log u — log up into the weak formulation of
the equation, we obtain

p u(logu — 1) — ulogup dx—l—/ ——uB doe =

up dt
—/Q(\/EDQI—V\/E@JV\/Q): (ﬁDQﬁivﬁ@)v\fDQIOguB) dz .

The derivation of entropies for the DLSS equation by Jiingel and Matthes in [18]
now proceeds by adding a constant multiple of the following expressions (note that
both expressions are zero) to the right-hand side of the previous equation:

1 1

34 / div ( VVau 2‘v\/a) dz —/ —|VVulPVyu - i dHO?
(39 Q \/ﬂ| | o0 \/ﬂ| |
and
(35) / div (D*/uVy/u — AVuV/u) dz

Q

—/ it D2V - Vvu— Ayu i - Vyu dH

o0

Note that the boundary terms contained in both expressions vanish in the case

of periodic boundary conditions. In case of sufficiently smooth strictly positive
Dirichlet-Neumann boundary data, the boundary terms are still well-behaved:
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e The boundary term in (34) obviously only depends on the boundary data,
not on the solution (as the tangential components of Vu on 9 coincide
with the tangential components of Vug on 0f); the normal component of
Vu on 0f) is prescribed to match the normal component of Vug by the
Neumann boundary condition).

e The boundary term in (35) also only depends on the boundary data up. To
see this, the key observation is that the terms involving second derivatives
of y/u in direction perpendicular to 92 cancel.

To be specific, choose an orthonormal base #; of the tangent space of 9
at a fixed point x € 9. We rewrite 7i - D?\/u as (it - D*\/u- )i + Y, (7 -
D2\/u-1;)t; and Ay/u as ii - D2\/u -+ >, t; - D*\/u - 1;.

We then see that the terms involving the second spatial derivative of
u in direction perpendicular to 99 (i.e. the terms involving the factor
ii- D?\/u-7) in the boundary integral cancel; more precisely, the integrand
at  becomes

Y (i D*Va- ) Vu—=Yy (- D*Vu-5)ii- V.

K3

7

Terms of the form £; - Dz\/ﬂ -1; can be expressed in terms of derivatives of
ulpq and in terms of 7 - Vu|sq only; finally terms of the form 7 - D?/u - t;
can be expressed in terms of derivatives of u|sq and 7 - Vulaq.

Since we have u|pn = uploq and 7 - Vulsgq = 7 - Vug|aq, the boundary
integral thus only depends upon up.

Therefore the procedure by Jiingel and Matthes can (at least formally) be carried
out, only resulting in some additional inhomogeneities on the right-hand side. The
terms involving products of u and up can be dealt with using an absorption argu-
ment and Gronwall’s lemma (if up is strictly positive and regular enough). The
entropy estimate for v = % is derived in a similar fashion, testing the equation

. 1 1
formally with NN

APPENDIX B

Proof of Lemma 10. For smooth stricly positive v we obtain integrating by parts
and using Holder’s inequality
1

7/ u?|0pul* dx :/ uOpul?0;0;u dx
3 [Sl]d [Sl]d

1/2 1/2
< / u 2| 0;ul* dx / 0;0;u|? dx
[st]4 [st]4

which gives

d
/ (Vul/2* da < O(d)Z/ |8;0iu? da < C(d)/ |D?ul? dx .
[S1]d =1 [S1]d [S1])d
Thus, for smooth strictly positive u the result follows using the property of the
Laplacian [ |D2u|2 dz = [ |Aul?* dz (which follows integrating by parts twice).
For general stricly positive u € H2([S']¢) the result follows by approximation (mol-

lification of u). For nonnegative u € H2([S']?), we replace u by u + € and pass to
the limit € — 0. O
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Proof of Lemma 11. We see that u'/* € W4([S']?) (by Lemma 10). If /u is
smooth, we obtain

f \f 1/4 1/4
i0;\u+ € = aaf+4 out*0,ut/
Vvu \/u+e3 !

Considering ps * v/u and passing to the limit § — 0, we see that the previous
equation holds true for any nonnegative u with \/u € H?([S']¢) (note that we may
pass to the limit in the last term on the right-hand side using the previous lemma).
We see that the last term on the right-hand side tends to zero a.e. as ¢ — 0. By
dominated convergence we see that it converges to zero in L?([S1]%) as € — 0.

On the other hand, the first term on the right-hand side converges to x,>00;0;v/u
pointwise a.e.; by dominated convergence it is seen to converge in L?([S1]%). This
implies that 9;0;1/u =0 a.e. on {u = 0}: otherwise, we would obtain the estimate

liminf. ¢ [|0;0;v/u + €|z = liminf6H0|\\/u—_H38 Vullz = ||Xu>00:051/ul|r2 <

|10;0;1/u||r2 which clearly is in conflict with the lower semicontinuity of the L2
norm with respect to convergence in the sense of distributions.

Thus, Xu>00;0j1/u = 0;0;4/u a.e.. This finishes the proof of the first part of our

lemma.

Regarding the second part, assume that u is nonnegative and that u!'/* is smooth.
We then calculate

1/4 us/t ul/4 cul/? 1/8
This equation holds for general u!'/* € H2([Sl]d), as seen by considering ps * u
and passing to the limit § — 0 (using again the previous lemma). Finally, an
argument analogous to the proof of the first part of the lemma yields the desired
convergence. O

1/4

Proof of Lemma 12. We estimate

llps * fs — fllze <|lps * (fs = f)llee + llps * f — fl|L»
<I[fs = fllee + llps * f — fllee

where in the second step we have used the fact that mollification does not increase
the LP norms. Passing to the limit § — 0, we obtain the desired result. O

Proof of Lemma 15. For £ € C°(Q5 x (0,00)), we calculate

| s utin@ g do ar
:/OooL/ﬂpg@—gj)tb(g/j)if(&t,lf) dy dz dt
:/OOO /Qu(x,t) (p(;*;tf( )) () da dt
_/OOO/Qu(x,t)jt(p(;*g)(z,t) dz dt

— [ e at
0

where we have used the symmetry of ps. Thus ps * u is weakly differentiable with
respect to time and the stated representation of (ps*u); holds. As the mollification
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of a distribution is smooth and as we have

/ (ug, ps * &) dt:/ (ps *ug, &) dt
0 0

we see that ps x u € W (I; C2(Q5)). O

loc

Proof of Lemma 14 b,c,d. The proof of assertion b) is similar to the proof of asser-
tion a): we first rewrite

DQ(p(; *u—|—e)1/2

1
:§(p5 s u+€)"V2D%(ps % u+€) — AV [(p(; U+ 6)1/4:| ®V [(pg wu+ e)l/

and notice that it only remains to deal with the first term on the right-hand side,
since convergence of the last term has already been established. We see that

D205 049 (2.0) = | [ e =) Duly )
| [ o5t = ) 2V DAVl + 8V OV ) T 0]
< ([ oste = c- (102214190 R) e dy)w
([ otz —umn )
Defining

(w(.,t) +€)"V2D%(u(.,t) +€)

So(t) == {m :

— (ps % u(.,t) + )" V2D?(ps x u(.,t) + €)

>7'}7
we get

1/2 12 2

/Xsﬁ(t)(x)‘(pa*u4-6)_ 2D (Pé*u—i—e)‘ dz

2
< [xsso@ [ psto—w)- € (10724 [9uE) (0.0) dy do
2,1/2 1/4,2 2
= [ (10224190 P) (1) [ xssio@pste — o) da dy

Now arguments analogous to the first case lead to the prove of the second assertion.

The proof of assertion c) is similar: we estimate
3+ (Vids0/a) (2.6) = [ palie =) (Vad.0:/i) (3.) dy

([utrtmte dy)w( 0:0/uly. 1) ps( — ) dy)m
1/2

< (/U(y,t)pa(x —y) dy + 6> v (/ |0:0:7/u(y, t)* ps(x — y) dy)
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Defining S (¢) analogous to the definition in the proof of statements a) and b), we
see that

1 2

/XSﬁ(t) (.’L‘) \/ﬁ (p(; * (\/ﬂaﬁl\/ﬂ)) (LL’,t) dx
< / xsi(6(®) / ps(@ — |Bd P (y, 1) dy da
- / 0.0/ (3, 1) / Xsso (@)ps(x — y) de dy

Again using the arguments from the proof of the first assertion, the statement is
proved.

Assertion d) again is proven analogously: we have

‘pg * (u1/48i3i\/ﬂaju1/4>‘ (x,t) = ‘/pg(ac —y) (u1/48i8i\/ﬂajul/4) (y,t) dy’

< </ u(y, t)ps(z — y) dy) " (/ 10:0:/uly, O*10u'* (y, )Y ps (x — y) dy) v

3/4

< ( [ utw st~y dy + )/ ( [ 100, 000 ) st~ ) dy)

Defining S(#) analogously, we obtain

4/3
(z,t) dx

<pau1+>/4 (ps = (w1000 /a0 )

Again, using arguments analogous to the above ones, the fourth assertion is shown.
Note that [0;0;v/ul - |0;ul/4| € L3(I; L3(Q)) by the assumptions of the lemma and
Holder’s inequality. U
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Formula B1

) oL
(VaD* Vi — Vi ® Vi) : D (m \/W)

S— 5—

(- vva- D*Va - Vavava

AV Vi Vi D) (e )

- /Q (VVaVAVE + AVaAva) (,% . ¢)

N/TETE:
o e )
+/Qv\/ﬁ~VA\/a(p5*w$)

N
o (6 o)
Formula ;2 |

T
2/ /wt\/pg*u—l—edmdt+2/\/p5*u0+61/)(.,0)dx
0o Ja Q

/0T<(p5*u)t,p§f’u+€> dt

dt

T v
7/0 <Ut7p5* ,7p5*u+€>

o [ vy

+/0 /QA\/E\/E (p‘;*ﬁs*uv%) da dt

_z/OT/QMwa <p5*(w.wm)> d dt

pPs*uU+¢€

—2/OT/QA\/EV\/6- (pa* (m*d’wvm)) iz dt
—/OT/QA\/wa <p5>k (wA\/m» da dt

pPs*uU+€

T

(U

—|—2/ /A\/ﬂ\/ﬂ psx | ———=Vps*u+e-Vyps*xu-+e dz dt
0 JQ ’ w/p(;*u—i—e?’ ’ ’
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