[39] | |
Multilevel Monte Carlo methods for the Dean-Kawasaki equation from fluctuating hydrodynamics, together with Federico Cornalba, submitted, 20 p., 2023.
arXiv:2311.08872 |
[38] | |
Approximation of classical two-phase flows of viscous incompressible fluids by a Navier-Stokes/Allen-Cahn system, together with Helmut Abels and Maximilian Moser, submitted, 39 p., 2023.
arXiv:2311.02997 |
[37] | |
Density fluctuations in weakly interacting particle systems via the Dean-Kawasaki equation, together with Federico Cornalba, Jonas Ingmanns, and Claudia Raithel, submitted, 73 p., 2023.
arXiv:2303.00429 |
[36] | |
Local minimizers of the interface length functional based on a concept of local paired calibrations, together with Sebastian Hensel, Tim Laux, and Theresa Simon, submitted, 35 p., 2023.
arXiv:2212.11840 |
*[35] | |
A monotonicity formula for minimizers of the Mumford-Shah functional in 2d and a sharp lower bound on the energy density, submitted, 16 p., 2022.
arXiv:2203.13177 |
*[34] | |
The local structure of the energy landscape in multiphase mean curvature flow: Weak-strong uniqueness and stability of evolutions, together with Sebastian Hensel, Tim Laux, and Theresa Simon, first part in (minor) revision at J. Eur. Math. Soc. (JEMS), 2023.
arXiv:2003.05478 |
[33] | |
Quantitative normal approximation for sums of random variables with multilevel local dependence structure, submitted, 2019. |
*[32] | |
Quantitative convergence of the vectorial Allen-Cahn equation towards multiphase mean curvature flow, together with Alice Marveggio, to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire, 53 p., 2023.
arXiv:2203.17143 |
*[31] | |
The Dean-Kawasaki equation and the structure of density fluctuations in systems of diffusing particles, together with Federico Cornalba, Arch. Ration. Mech. Anal., 247:76, 2023.
doi:10.1007/s00205-023-01903-7 |
[30] | |
External forces in the continuum limit of discrete systems with non-convex interaction potentials: Compactness for a Γ-development, together with Marcello Carioni and Anja Schlömerkemper, J. Convex Anal., 30(1):217-247, 2023. |
[29] | |
Global renormalised solutions and equilibration of reaction-diffusion systems with non-linear diffusion, together with Klemens Fellner, Michael Kniely, and Bao Quoc Tang, J. Nonlinear Sci., 33:66, 2023.
doi:10.1007/s00332-023-09926-w |
[28] | |
Sharp criteria for the waiting time phenomenon in solutions to the thin-film equation, together with Nicola De Nitti, Comm. Partial Differential Equations, 47(7):1394-1434, 2022.
doi:10.1080/03605302.2022.2056702 |
[27] | |
Global existence analysis of energy-reaction-diffusion systems, together with Katharina Hopf, Michael Kniely, and Alexander Mielke SIAM J. Math. Anal., 54(1):220-267, 2022.
doi:10.1137/20M1387237 |
[26] | |
Scaling limit of the homogenization commutator for Gaussian coefficient fields, together with Mitia Duerinckx and Antoine Gloria, Ann. Appl. Probab., 32(2):1179-1209, 2022. |
*[25] | |
Optimal homogenization rates in stochastic homogenization of nonlinear uniformly elliptic equations and systems, together with Stefan Neukamm, Arch. Ration. Mech. Anal., 242(1):343-452, 2021.
doi:10.1007/s00205-021-01686-9 |
[24] | |
A priori error analysis of a numerical stochastic homogenization method, together with Dietmar Gallistl and Daniel Peterseim, SIAM J. Numer. Anal. 59(2):660-674, 2021.
doi:10.1137/19M1308992 |
[23] | |
The waiting time phenomenon in spatially discretized porous medium and thin film equations, together with Daniel Matthes, SIAM J. Numer. Anal. 59(1):60-87, 2021.
doi:10.1137/19M1300017 |
[22] | |
Convergence rates of the Allen-Cahn equation to mean curvature flow: A short proof based on relative entropies, together with Tim Laux and Theresa Simon, SIAM J. Math. Anal. 52(6):6222-6233, 2020.
doi:10.1137/20M1322182 |
[21] | |
Variance reduction for effective energies of random lattices in the Thomas-Fermi-von Weizsäcker model, together with Michael Kniely, Nonlinearity 33:5733, 2020.
doi:10.1088/1361-6544/ab9728 |
*[20] | |
Weak-strong uniqueness for the Navier-Stokes equation for two fluids with surface tension, together with Sebastian Hensel, Arch. Ration. Mech. Anal. 36(2):967-1087, 2020.
doi:10.1007/s00205-019-01486-2 |
*[19] | |
The choice of representative volumes in the approximation of effective properties of random materials, Arch. Ration. Mech. Anal. 234(2):635-726, 2019.
doi:10.1007/s00205-019-01400-w |
[18] | |
Bi-Sobolev solutions to the prescribed Jacobian inequality in the plane with Lp data, together with Olivier Kneuss, J. Differential Equations 266:257-311, 2019.
doi:10.1016/j.jde.2018.07.045 |
[17] | |
Existence of nonnegative solutions to stochastic thin-film equations, together with Günther Grün, SIAM J. Math. Anal. 50(1):411-455, 2018.
doi:10.1137/16M1098796 |
[16] | |
Stochastic homogenization of linear elliptic equations: Higher-order error estimates in weak norms via second-order correctors, together with Peter Bella, Benjamin Fehrman, and Felix Otto, SIAM J. Math. Anal. 49(6):4658-4703, 2017.
doi:10.1137/16M110229X |
[15] | |
Weak-strong uniqueness of solutions to entropy-dissipating reaction-diffusion equations, Nonlinear Anal. 159:181-207, 2017.
doi:10.1016/j.na.2017.03.001 |
[14] | |
Liouville principles and a large-scale regularity theory for random elliptic operators on the half-space, together with Claudia Raithel, SIAM J. Math. Anal. 49(1):82-114, 2017.
doi:10.1137/16M1070384 |
[13] | |
Sublinear growth of the corrector in stochastic homogenization: Optimal stochastic estimates for slowly decaying correlations, together with Felix Otto, Stochastics and Partial Differential Equations: Anal. Comp. 5(2):220-255, 2017.
doi:10.1007/s40072-016-0086-x |
*[12] | |
A higher-order large-scale regularity theory for random elliptic operators, together with Felix Otto, Comm. Partial Differential Equations 41(7):1108-1148, 2016.
doi:10.1080/03605302.2016.1179318 |
[11] | |
Behaviour of free boundaries in thin-film flow: the regime of strong slippage and the regime of very weak slippage, Ann. Inst. H. Poincaré Anal. Non Linéaire 33(5):1301-1327, 2016.
doi:10.1016/j.anihpc.2015.05.001 |
[10] | |
Analysis of a modified second-order mixed hybrid BDM1 finite element method for transport problems in divergence form, together with Fabian Brunner and Peter Knabner, SIAM J. Numer. Anal. 54(4):2359-2378, 2016.
doi:10.1137/15M1035379 |
[9] | |
A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier-Stokes equation, SIAM J. Numer. Anal. 53(5):2178-2205, 2015.
doi:10.1137/140966654 |
*[8] | |
Global existence of renormalized solutions to entropy-dissipating reaction-diffusion systems, Arch. Ration. Mech. Anal. 218(1):553-587, 2015.
doi:10.1007/s00205-015-0866-x |
[7] | |
Finite speed of propagation and waiting times for the stochastic porous medium equation - a unifying approach, together with Günther Grün, SIAM J. Math. Anal. 47(1):825-854, 2015.
doi:10.1137/140960578 |
[6] | |
Estimates on front propagation for nonlinear higher-order parabolic equations: an algorithmic approach, Interfaces Free Bound. 17(1):1-20, 2015.
doi:10.4171/IFB/331 |
*[5] | |
Upper bounds on waiting times for the thin-film equation: the case of weak slippage, Arch. Ration. Mech. Anal. 211(3):771-818, 2014.
doi:10.1007/s00205-013-0690-0
|
[4] | |
Uniqueness of solutions of the Derrida-Lebowitz-Speer-Spohn equation and quantum drift-diffusion models, Comm. Partial Differential Equations 38(11):2004-2047, 2013.
doi:10.1080/03605302.2013.823548
|
[3] | |
Optimal lower bounds on asymptotic support propagation rates for the thin-film equation, J. Differential Equations 255(10):3127-3149, 2013.
doi:10.1016/j.jde.2013.07.028
|
[2] | |
Infinite speed of support propagation for the Derrida-Lebowitz-Speer-Spohn equation and quantum drift-diffusion models, NoDEA Nonlinear Differential Equations Appl. 21(1):27-50, 2014.
doi:10.1007/s00030-013-0235-0
|
[1] | |
Advection-driven support shrinking in a chemotaxis model with degenerate mobility, SIAM J. Math. Anal. 45(3):1585-1615, 2013.
doi:10.1137/120874291 |